直线与圆填空题1若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 16:03:36
直线与圆填空题1
若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是
已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且向量BF=2向量FD,则C的离心率为
若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是
已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且向量BF=2向量FD,则C的离心率为
直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是
解答:因为直线y=kx+1(k属于R)
所以,当x=0时,y=1
所以,直线y=kx+1(k属于R)始终经过点(0,1),只要此点位于椭圆x2/5+y2/t=1(t大于0)内部,他们就总有公共点
所以,t>=1
又,椭圆的焦点在x轴上,所以,t<5
所以,1=<t<5
解答:因为直线y=kx+1(k属于R)
所以,当x=0时,y=1
所以,直线y=kx+1(k属于R)始终经过点(0,1),只要此点位于椭圆x2/5+y2/t=1(t大于0)内部,他们就总有公共点
所以,t>=1
又,椭圆的焦点在x轴上,所以,t<5
所以,1=<t<5
直线与圆填空题1若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取
若直线y=kx+1(k∈R)与焦点在x轴上的椭圆x^2/5+y^2/t=1恒有公共点,则t的取值范围——
圆椎曲线题目若直线y=kx+1(k属于R)与焦点在x轴上的椭圆x^2/5+y^2/t=1恒有公共点,则t的范围是
直线y=kx+1 ( k∈R)与焦点在x轴上的椭圆x^2/5+y^2/t=1恒有公共点,则t的取值范围是?
要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x
若直线Y=KX+1,K属于R与椭圆X^2/5+Y^2/M=1,恒有公共点,求M范围
任意实数k,直线L:y=kx+1与焦点在x轴上的椭圆x^2/5+y^2/m=1恒有公共点.要解答过程,问题在下面.急需!
若直线y-kx-1=0(k∈R)与椭圆x²/5+y²/m=1恒有公共点,则m的取值范围是
直线y=kx+1(k∈R) 与椭圆x²/5+y²/m=1恒有公共点,求m的取值范围
直线y=k(x+1)+1与椭圆x2/5+y2/m=1恒有公共点,且椭圆焦点在x轴上,则m的取值范围是
直线y=kx+1(k∈R)与椭圆x25+y2m=1恒有公共点,则m的取值范围是( )
1.已知对于k∈R,直线y=kx+1与椭圆(x^2)/5+(y^2)/m =1恒有公共点,则实数m的取值范围是_____