在直三棱柱ABC-A1B1C1中,BA=BC=2,BA⊥BC,异面直线A1B与AC成60度角,点O、E分别是棱AC、BB
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:07:04
在直三棱柱ABC-A1B1C1中,BA=BC=2,BA⊥BC,异面直线A1B与AC成60度角,点O、E分别是棱AC、BB1的中点,点F为棱B1C1上的动点(1)证明:A1E⊥OF(2)求点E到平面AB1C的距离(3)求二面角B1-A1C-C1的大小
1,A1B与AC成60°即A1B与A1C1成60°,求出棱柱高为2
在△BAC中,做AC AB边的中位线OQ,连QB1,则OF在平面OQB1F中,易知A1E⊥B1C1,再证A1E⊥QB1即可证明A1E⊥平面OQB1,即A1E⊥OF
2,证明平面BB1O⊥平面ACB1,
那么E到直线OB1的距离即到平面ACB1的距离
易求得√3/3
3,做B1M⊥A1C于M,做MN⊥A1C1于N,连BN,求出MB1=2√6/3 MN=√6/3 NB1=2
cos∠B1MN=-1/4 故夹角为arccos-1/4
在△BAC中,做AC AB边的中位线OQ,连QB1,则OF在平面OQB1F中,易知A1E⊥B1C1,再证A1E⊥QB1即可证明A1E⊥平面OQB1,即A1E⊥OF
2,证明平面BB1O⊥平面ACB1,
那么E到直线OB1的距离即到平面ACB1的距离
易求得√3/3
3,做B1M⊥A1C于M,做MN⊥A1C1于N,连BN,求出MB1=2√6/3 MN=√6/3 NB1=2
cos∠B1MN=-1/4 故夹角为arccos-1/4
在直三棱柱ABC-A1B1C1中,BA=BC=2,BA⊥BC,异面直线A1B与AC成60度角,点O、E分别是棱AC、BB
已知在直三棱柱ABC~A1B1C1,A1B⊥B1C,A1B⊥AC1证明AC=BC
如图,在直三棱柱ABC -A1B1C1中,AC =BC ,AC1垂直于A1B,M,N分别是A1B1,AB 的中点.求证:
直三棱柱ABC-A1B1C1中,AC垂直于BC,AA1=2,AC=2,BC=1,求直线A1B与平面B1BCC1所成角的余
在直三棱柱ABC-A1B1C1中,AC=4,CB=2,∠ACB=60度,E、F分别是A1C1,BC的中点.问题在下:::
直三棱柱ABC-A1B1C1中 角ACB=90度 AC=2BC A1B垂直于B1C 求B1C与A1ABB1成角余弦(用向
在斜三棱柱ABC-A1B1C1中,AC=BC,D为AB的中点,平面A1B1C1⊥平面ABB1A1,异面直线BC1⊥AB1
(2014•鹰潭二模)如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AB=2,AB⊥BC.M、N分别是AC和BB
在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA
如图,在直三棱柱A1B1C1-ABC中,AB⊥BC,E,F分别是A1B,AC1的中点,)
在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90,侧棱AA1=2,D,E分别是CC1与A1B的中点
如图,在体积为1的直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1 求直线A1B与平面BB1C1C所成的