直线l:y=ax+1与双曲线3x^-y^=1相交于A B两点,是否存在实数a使AB关于直线x-2y=0对称?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:07:32
直线l:y=ax+1与双曲线3x^-y^=1相交于A B两点,是否存在实数a使AB关于直线x-2y=0对称?
将y=ax+1代入方程3x2-y2=1,得
3x2-(ax+1)2=1,整理,
(a2-3)x2+2ax+2=0
设交点为A(x1,y1),B(x2,y2),则
x1+x2=-2a/(a2-3),x1x2=2/(a2-3)
所以,y1y2=(ax1+1)(ax2+1)=a2·x1x2+a(x1+x2)+1=1
因为 以AB为直径的圆经过圆点
所以,OA⊥OB,故OA与OB的斜率的乘积为-1.
∴x1x2=-y1y2
即2/(a2-3)=-1,解得
a=±1.
3x2-(ax+1)2=1,整理,
(a2-3)x2+2ax+2=0
设交点为A(x1,y1),B(x2,y2),则
x1+x2=-2a/(a2-3),x1x2=2/(a2-3)
所以,y1y2=(ax1+1)(ax2+1)=a2·x1x2+a(x1+x2)+1=1
因为 以AB为直径的圆经过圆点
所以,OA⊥OB,故OA与OB的斜率的乘积为-1.
∴x1x2=-y1y2
即2/(a2-3)=-1,解得
a=±1.
直线l:y=ax+1与双曲线3x^-y^=1相交于A B两点,是否存在实数a使AB关于直线x-2y=0对称?
已知直线y=ax+1与双曲线3x^2-y^2=1相交于两点A、B,问是否存在实数a,使得A、B两点关于直线y=3x对称,
已知直线y=ax+1与双曲线3x^2-y^2=1相交于两点A、B,问是否存在实数a,使得A、B两点关于直线y=3x对称
已知直线y=ax+1与双曲线3x^2-y^2=1相交于两点A、B,问是否存在实数a,使得A、B两点关于直线y=3x对称?
已知直线y=ax+1与双曲线3x^2 -y^2=1 相交于两点A、B,是否存在实数a,使得A、B关
已知直线l:y=ax+1与双曲线c:3x^2-y^2=1相交于A,B两点,实数a取值范围?
直线L:ax-y-i=0与双曲线C:x^2-2y^2=1相交于PQ两点,是否存在实数a,使得以PQ为直径的圆过原点!说明
直线y=ax+1与双曲线3x^2-y^2=1相交于A、B两点
已知直线y=ax+1与双曲线3x^2-y^2=1相交于A,B两点.
为什么OA⊥OB?已知直线l:y=ax+1与双曲线c:3x^2-y^2=1相交于A、B两点当实数a为何值时,线段AB为直
已知直线l:y=ax+1与双曲线c:3x^2-y^2=1相交于A、B两点当实数a为何值时,以线段AB为直径的圆经过坐标原
高三数学双曲线问题已知y=ax+1与双曲线3x^-y^=1相交于两点A,B,问是否存在实数a,使得以AB为直径的圆经过坐