作业帮 > 数学 > 作业

以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:03:06
以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.
(1)说明BD=CE;
(2)延长BD,交CE于点F,求∠BFC的度数;
(3)若如图2放置,上面的结论还成立吗?请简单说明理由.
以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.
(1)∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,∠BAD=∠EAC=90°,AD=AE,
∵在△ADB和△AEC中,

AD=AE
∠DAB=∠EAC
AB=AC,
∴△ADB≌△AEC(SAS),
∴BD=CE;
(2)∵△ADB≌△AEC,
∴∠ACE=∠ABD,
而在△CDF中,∠BFC=180°-∠ACE-∠CDF
又∵∠CDF=∠BDA
∴∠BFC=180°-∠DBA-∠BDA
=∠DAB
=90°;
(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:
∵△ABC、△ADE是等腰直角三角形
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∵∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAD=∠CAE,
∵在△ADB和△AEC中,

AD=AE
∠DAB=∠EAC
AB=AC,
∴△ADB≌△AEC(SAS)
∴BD=CE,∠ACE=∠DBA,
∴∠BFC=∠DAB=90°.