一道高中数学数列题设数列{an}的前n项和Sn=4/3an-(1/3)*(2^(n+1))+2/3, n=1,2,3……
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 11:11:31
一道高中数学数列题
设数列{an}的前n项和Sn=4/3an-(1/3)*(2^(n+1))+2/3, n=1,2,3……
(1) 求首项a1与通项an
(2)设Tn=(2^n)/Sn, n=1,2,3……,证明:T1+T2+T3+…Tn< 3/2
第一小题我会做,找高手重点帮忙解决第2小题,说清楚怎么放缩法.
Sn=(4/3)an-(1/3)*(2^(n+1))+2/3
设数列{an}的前n项和Sn=4/3an-(1/3)*(2^(n+1))+2/3, n=1,2,3……
(1) 求首项a1与通项an
(2)设Tn=(2^n)/Sn, n=1,2,3……,证明:T1+T2+T3+…Tn< 3/2
第一小题我会做,找高手重点帮忙解决第2小题,说清楚怎么放缩法.
Sn=(4/3)an-(1/3)*(2^(n+1))+2/3
a1=2
Sn=4/3an-(1/3)*(2^(n+1))+2/3,
Sn-1=4/3a(n-1)-(1/3)*(2^n)+2/3,
相减得
an=4/3an-4/3a(n-1)-(1/3)*(2^n)
an=4a(n-1)+2^n
4an-1=4^2*a(n-2)+4*2^(n-1)
...
4^(n-2)a2=4^(n-1)*a1+4^(n-2)*2^2
以上叠加
an=4^(n-1)*a1+2^n+4*2^(n-1)+...+4^(n-2)*2^2
=2^(2n-1)+2^n*[2^(n-1)-1]
=2^(2n)-2^n
2)设Tn=(2^n)/Sn
Sn=4/3[2^(2n)-2^n]-(1/3)*(2^(n+1))+2/3
=4/3*2^(2n)-2^(n+1)+2/3
Tn=(2^n)/Sn
=1/[4/3*2^n-2+2/(3*2^n)]
=3/2*【1/(2^(n+1)+1/2^n-3)】
Tn
Sn=4/3an-(1/3)*(2^(n+1))+2/3,
Sn-1=4/3a(n-1)-(1/3)*(2^n)+2/3,
相减得
an=4/3an-4/3a(n-1)-(1/3)*(2^n)
an=4a(n-1)+2^n
4an-1=4^2*a(n-2)+4*2^(n-1)
...
4^(n-2)a2=4^(n-1)*a1+4^(n-2)*2^2
以上叠加
an=4^(n-1)*a1+2^n+4*2^(n-1)+...+4^(n-2)*2^2
=2^(2n-1)+2^n*[2^(n-1)-1]
=2^(2n)-2^n
2)设Tn=(2^n)/Sn
Sn=4/3[2^(2n)-2^n]-(1/3)*(2^(n+1))+2/3
=4/3*2^(2n)-2^(n+1)+2/3
Tn=(2^n)/Sn
=1/[4/3*2^n-2+2/(3*2^n)]
=3/2*【1/(2^(n+1)+1/2^n-3)】
Tn
一道高中数学数列题设数列{an}的前n项和Sn=4/3an-(1/3)*(2^(n+1))+2/3, n=1,2,3……
设数列{an}的前n项和Sn=3an-2(n=1,2,…).
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
已知数列{an}中,an=(2n+1)3n,求数列的前n项和Sn
设数列{an}的前n项和Sn=-3n^2+6n+1,求通项公式
高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等
设数列{An}的前n项和为Sn,且满足Sn=2An-3n,n=1,2,3……(1)设Bn=An+3,求证:数列{Bn}是
已知数列{an}的前n项和Sn=1/3n(n+1)(n+2),试求数列(1/an)的前n项和
已知数列{an}的前n项和为Sn=1+2+3+4+…+n,求f(n)= Sn /(n+32)Sn+1的最大值
3 数列{an}的通项公式an=(-1)^(n-1)*2n(n属于N*)设其前n项和为Sn,则S100=
还是…数列…急…设Sn是正项数列{An}的前n项和,且Sn=1/4An^2+1/2An-3/4.①求数列{An}的通项公