设f(x)在[a,b]上连续,在(a,b)内可导且f(a)=f(b)=1.证:存在ζ,η∈(a,b),使e^(η-ζ)[
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:15:36
设f(x)在[a,b]上连续,在(a,b)内可导且f(a)=f(b)=1.证:存在ζ,η∈(a,b),使e^(η-ζ)[f(η)+f'(η)]=1
令F(x)=e^xf(x),则F(b)=e^b,F(a)=e^a,F'(x)=e^x(f(x)+f'(x)).
对F(x)用微分中值定理,存在c位于(a,b),使得
(e^b-e^a)/(b-a)=F'(c)=e^c(f(c)+f'(c)).(1)
对函数e^x在[a,b]上用微分中值定理,存在d位于(a,b),使得
(e^b-e^a)/(b-a)=e^d (2)
由(1)和(2)得
e^d=e^c(f(c)+f'(c)),于是
e^(c-d)[f(c)+f(c))]=1,结论成立.
对F(x)用微分中值定理,存在c位于(a,b),使得
(e^b-e^a)/(b-a)=F'(c)=e^c(f(c)+f'(c)).(1)
对函数e^x在[a,b]上用微分中值定理,存在d位于(a,b),使得
(e^b-e^a)/(b-a)=e^d (2)
由(1)和(2)得
e^d=e^c(f(c)+f'(c)),于是
e^(c-d)[f(c)+f(c))]=1,结论成立.
设f(x)在[a,b]上连续,在(a,b)内可导且f(a)=f(b)=1.证:存在ζ,η∈(a,b),使e^(η-ζ)[
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f
设f(x)在[a,b]上连续,在[a,b]内可导,且f(a)=f(b)=0.试证在(a,b)内至少存在一点ζ,f'(ζ)
f(x)在[a,b]上连续,在(a,b)内可导,且f(b)=f(a)=1,证明:存在ε,η∈(a,b),使e^(η-ε)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
设函数f(x)在区间[a,b]上连续,且f(a)b.证明存在ξ∈(a,b),使得f(ξ)=ξ
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明存在c,d属于(a,b)使得e的(d-c
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(
设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)