作业帮 > 数学 > 作业

设圆满足:1.截y轴所得弦长为2;2.被x轴分成两段弧的比值为3:1 在满足上述条件的所有圆中,求圆心到直线l:x-2y

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:46:07
设圆满足:1.截y轴所得弦长为2;2.被x轴分成两段弧的比值为3:1 在满足上述条件的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.要过程和结果的,
设圆满足:1.截y轴所得弦长为2;2.被x轴分成两段弧的比值为3:1 在满足上述条件的所有圆中,求圆心到直线l:x-2y
因为所分的两段弧比为3:1所以劣弧所对的圆心角为90度 设圆心坐标为(a,b)
则有1^2+a^2=R^2 又因为圆把X抽截的线段与半径组成的是等腰直角山角形又有R^=2b^2 联立这两个方程就能求出圆的轨迹了!楼主由于我这在网吧没比就不能帮你算了!第2问 就根据圆心的轨迹到直线的距离 利用点到直线的距离公式就OK了
设圆满足:1.截y轴所得弦长为2;2.被x轴分成两段弧的比值为3:1 在满足上述条件的所有圆中,求圆心到直线l:x-2y 设圆满足:截Y轴所得的弦长为2,被X轴分成两段弧,其弧长之比为3:1,在满足条件的所有圆中,求圆心到直线L:X-2Y=0 已知圆满足:①截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长比为3:1.在满足条件的所有圆中,求圆心到直线l:x-2y 设圆满足(1)截y轴所得弦长为2(2)被x轴分成两段圆弧,其弧长比为3:1,在满足(1)(2)的所有圆中,求圆心到直线L 设圆满足:截Y轴所得弦长为2且被X轴分成两段圆弧,其弧长的比3:1,在满足条件的圆中.求圆心到直线X-2Y=0的... 设圆C满足:(1)截y轴所得弦长为2,(2)被x轴分成两段圆弧,其弧长比为3:1,在满足上述条件的所有圆中,求圆心到直线 设圆满足 截y轴所得弦长为2.被x轴分成两段圆弧,共弧长之比为3:1.圆心到直线L:x-2y=0的距离为5分之根 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,满足条件12 求圆心到直线x-2y=0的距离最小的方程. 圆已知圆满足:1.截y轴所得弦长为2.2.被x轴分成两段圆弧,其弧长的比为3:13.圆心到直线l:x-2y=0距离最小求 知圆满足(1)截y轴所得弦长为2;⑵被x轴分成2圆弧比3:1(3)圆心到直线l:x-2y=0的距离为(根号5/5),求圆 设圆满足:条件1:截y轴所得弦长为2,条件:2被x轴分成两段圆弧,其弧长的比为3:1,在满足条件1,2的所有... 高一圆的方程设圆满足条件:①截y轴所得的弦长为2②被x轴分成两段圆弧,其弧长的比为3:1③圆心到直线l:x-2y=0的距