作业帮 > 数学 > 作业

求解微分方程x(dy/dx)^2-2(dy/dx)+4x=0,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:50:37
求解微分方程x(dy/dx)^2-2(dy/dx)+4x=0,
求解微分方程x(dy/dx)^2-2(dy/dx)+4x=0,
(dy/dx)^2-2/x*(dy/dx)+4=0
(dy/dx-1/x)^2=1/x^2-4
dy/dx=1/x+根号(1-4x^2)/x 或 dy/dx=1/x-根号(1-4x^2)/x
①dy/dx=1/x+根号(1-4x^2)/x
y=ln|x|+∫根号(1-4x^2)/xdx
令x=1/2*sint dx=1/2*cost
y=ln|x|+∫csct-sintdt
=ln|x|+In|csct-cott|+cost+C
=ln|x|+ln|cscarcsin2x-cotarcsin2x|+cosarcsin2x+C
=ln|[1-根号(1-4x^2)]/2|+根号(1-4x^2)+C
②dy/dx=1/x-根号(1-4x^2)/x
y=ln|x|-∫根号(1-4x^2)/xdx
令x=1/2*sint dx=1/2*cost
y=ln|x|-∫csct-sintdt
=ln|x|-In|csct-cott|-cost+C
=ln|x|-ln|cscarcsin2x-cotarcsin2x|-cosarcsin2x+C
=ln|[1+根号(1-4x^2)]/2|-根号(1-4x^2)+C