作业帮 > 数学 > 作业

等腰直角三角形ABC中,∠BAC=90°,BD平分∠CBA,CE垂直于BD交BD的延长线为点E,证明BD等于2CE

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 08:58:48
等腰直角三角形ABC中,∠BAC=90°,BD平分∠CBA,CE垂直于BD交BD的延长线为点E,证明BD等于2CE
等腰直角三角形ABC中,∠BAC=90°,BD平分∠CBA,CE垂直于BD交BD的延长线为点E,证明BD等于2CE
首先做辅助线,延长CE交BA的延长线于F
因为角EBF=角EBC,BE=BE,角BEF=角BEC=90度
所以三角形BEF和BEC全等
所以BC=BF,CE=EF
所以CE=1/2 CF
又因为角ABD+ADB=90度,角ECD+CDE=90度,角ADB=CDE
所以角ABD=ECD
因为AB=AC,角DAB=FAC
所以三角形DAB和FAC全等
所以BD=CF
所以CE=1/2 BD
所以BD=2CE