作业帮 > 数学 > 作业

高等代数考研题设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:40:54
高等代数考研题
设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直和.
高等代数考研题设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直
感觉题目有点问题,最后应该是证明:V可分解为两个正交的二维A不变子空间的直和,否则A作为一个变换怎么分解为直和?
我得想法:
V是4维空间,则A的特征多项式为4次,又没有实特征值,从而特征多项式一定是两个实数域不可约二次多项式的乘积.
A在4维复空间内一定存在复特征值,且其虚部不为0,共轭成对,令为a1+ib1,a1-ib1,a2+ib2,a2-ib2,b1和b2都不为0,易知共轭的特征值对应的特征向量也共轭,从而,一对共轭特征值对应于两个4维实数列向量u,v,且
A(u+iv)=(a1+ib1)(u+iv),则
Au=a1u-b1v,
Av=a1v+b1u,(1)
u,v线性无关,否则令u=hv,则带入(1),可得到(h*h+1)*b1=0,这是不可能的,所以u,v线性无关
由(1)得u,v的生成子空间即为V在A下的一个不变子空间,同理可得另一个不变子空间.因为不同特征值的特征向量线性无关,从而这两个不变子空间的直和为V
这两个子空间的正交性还不知道怎么证明...
高等代数考研题设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直 正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换. 设a是n维欧式空间v的线性变换,证明,a是正交变换的充分必要条件是a在v任意一组标准正交基下的矩阵是正交矩阵 设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,在V中找出一组标准正交基,使T在这组 设A是n维欧式空间V的一个线性变换,证明:如果A既是正交变换又是对称变换,那么A^2=E是单位变换 设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2 线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m) 设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然. 正交变换证明设V是n维欧式空间 a b属于V 且\a\=\b\ 证明 V有正交变换T使 T(a)=b 设σ是欧式空间V的一个线性变换,证明:σ是正交变换的充要条件是对V的任意向量=. 高等代数习题求教 设V为n维欧式空间,试证明从V的一个标准正交基(I)到基(II)间的过渡矩阵为正 设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基