设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:06:17
设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3
若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.
若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.
因为an+1-an为等差数列,a2-a1=-2,a3-a2=-1解得公差为1,an+1-an=-2+(n-1)*1=n-3然后根据叠加法算an
a2-a1=-2,a3-a2=-1,.an-an-1=n-4,吧这些等式全部加在一起的an-a1=(-2+n-4)/2*n
利用同种方法先解bn+1-bn的通向公式再根据叠加法算bn
b2-b1=-2,b3-b2=-1,解得公比为1/2,所以bn+1-bn=-2*(1/2)^(n-1)
左边之和为bn-b1=-2*(1-(1/2)^n)/(1-1/2)(等比数列求和公式)
a2-a1=-2,a3-a2=-1,.an-an-1=n-4,吧这些等式全部加在一起的an-a1=(-2+n-4)/2*n
利用同种方法先解bn+1-bn的通向公式再根据叠加法算bn
b2-b1=-2,b3-b2=-1,解得公比为1/2,所以bn+1-bn=-2*(1/2)^(n-1)
左边之和为bn-b1=-2*(1-(1/2)^n)/(1-1/2)(等比数列求和公式)
设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3
设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3
设数列{an}、{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,{bn
设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列
设数列{An}{Bn} 满足A1=B1= A2=B2=6 A3=B3=5且{An+1-An}是等差数列{Bn+1-Bn}
设数列an,bn分别满足a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,
设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列,{bn
设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3且数列{a(n+1)-an}是等差数列,数列{
设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···
设数列An,Bn满足a1=b1=6,a2=b2=4,a3=b3=3,且数列A(n+1)-An(n属于正整数)是等差数列.
已知两个等比数列{an},{bn}满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}
数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q