有一个运算程序,可以使:a⊕b=n(n为常数)时,得(a+1)⊕b=n+1,a⊕(b+1)=n-2,现在已知,1⊕1=2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 13:11:04
有一个运算程序,可以使:a⊕b=n(n为常数)时,得(a+1)⊕b=n+1,a⊕(b+1)=n-2,现在已知,1⊕1=2,那么2013⊕2013=______;2014⊕2014=________
a♁b=n (a+1)♁b=n+1 (a+2)♁b=(a+1+1)♁b=n+1+1=n+2
类推得 (a+k)♁b=n+k
同法可以得到 a♁b=n a♁(b+1)=n-2 a ♁(b+2)=n-2-2=n-4
所以可以得到 a♁(b+m)=n-2m
所以 (a+k)♁(b+m)=a♁(b+m)+k=a♁b-2m+k
2013♁2013=1♁1 -2×2012+2012=2-2012=-2010
2014♁2014=1♁1 -2×2013+2013=2-2013=-2011
类推得 (a+k)♁b=n+k
同法可以得到 a♁b=n a♁(b+1)=n-2 a ♁(b+2)=n-2-2=n-4
所以可以得到 a♁(b+m)=n-2m
所以 (a+k)♁(b+m)=a♁(b+m)+k=a♁b-2m+k
2013♁2013=1♁1 -2×2012+2012=2-2012=-2010
2014♁2014=1♁1 -2×2013+2013=2-2013=-2011
有一个运算程序,可以使:a⊕b=n(n为常数)时,得(a+1)⊕b=n+1,a⊕(b+1)=n-2,现在已知1⊕1=2,
有一个运算程序,可以使:a⊕b=n(n为常数)时,得(a+1)⊕b=n+1,a⊕(b+1)=n-2,现在已知,1⊕1=2
有一道运算程序,可以使:a⊕b=n(n为常数)时,得(a+1)⊕b=n+1,a⊕(b+1)=n-2,现在已知1⊕1=2,
有一个运算程序,可以使:a@b=n(n为常数时),得(a+1)@b=n+1,a@(b+1)=n-2,现在已知1@1=2,
有一个运算程序,可以使:a@b=n【n为常数】时,得(a+1)@b=n+1,a@(b+1)=n-2,现在已知1@1=2,
有一个运算程序 可以使a♁b=n(n为常数)时,得(a+1)♁b=n+1,a♁(b+1)=n-2,现在已知1♁1=2,
有一个运算程序,可以使:a+b=n(n为常数)时,得(a+1)+b=n+1,a+(b+1)=n-2现在已知1+1=2,那
数学竞赛练习有一个运算程序,可以使a#b=n(n为常数)时,得(a+1)#b=n+1,a#(b+1)=n-2,现在已知1
有一个运算程序,可以使a+b=n(n为常数),得(a+1)+b=n+1,a+(b+1)=n-2,现在已知1+1=2
有一个运算程序,当a⊕b=n(n为常数)时,定义(a+1)⊕b=n+1,a⊕(b+1)=n-2,现在已知1⊕1=2,那么
一个运算程序,可以使:a*b=n(n为常数)时,得(a+1)*b=n+1,a*(b+1)=n-2.现在已知1*1=2,那
有一个运算程序,可以使A+B=9(N为常数)时,得(A+1)+B=N+1,A+(B+1)=N+2 现在已知1+1=2 ,