已知数列{An}的通项公式An=n.cos(nπ/2+π/3),记Sn=a1+a2+…+an,求S2002
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 22:02:27
已知数列{An}的通项公式An=n.cos(nπ/2+π/3),记Sn=a1+a2+…+an,求S2002
a(n) = ncos(nπ/2+π/3),n = 1,2,...
a(4k) = 4kcos(4kπ/2+π/3) = 4kcos(π/3) = 2k,
a(4k+1) = (4k+1)cos[(4k+1)π/2+π/3] = (4k+1)cos[π/2+π/3]
= (4k+1)sin(-π/3) = -(4k+1)3^(1/2)/2.
a(4k+2) = (4k+2)cos[(4k+2)π/2+π/3] = (4k+2)cos[π+π/3]
= -(4k+2)/2 = -(2k+1)
a(4k+3) = (4k+3)cos[(4k+3)π/2+π/3] = (4k+3)cos[3π/2+π/3]
= (4k+3)sin(-π/3) = -(4k+3)3^(1/2)/2.
S(2002) = [a(1) + a(5) + ...+ a(2001)] + [a(2) + a(6) + ...+ a(2002)] + [a(3) + a(7) + ...+ a(1999)] + [a(4) + a(8) + ...+ a(2000)]
= -3^(1/2)/2[1 + 5 + ...+ 2001] - [1 + 3 + ...+ 1001] -3^(1/2)/2[3 + 7 + ...+ 1999] + [2 + 4 + ...+ 1000]
= -3^(1/2)/2[1 + 3 + 5 + ...+ 1999 + 2001] - [1 + 1001]^2/4 + [2 + 1000]*500/2
= -3^(1/2)/2[1 + 2001]^2/4 - 1002^2/4 + 501*500
= -3^(1/2)/2[2002]^2/4 - 501^2 + 501*500
= -3^(1/2)/2[1001]^2 - 501
a(4k) = 4kcos(4kπ/2+π/3) = 4kcos(π/3) = 2k,
a(4k+1) = (4k+1)cos[(4k+1)π/2+π/3] = (4k+1)cos[π/2+π/3]
= (4k+1)sin(-π/3) = -(4k+1)3^(1/2)/2.
a(4k+2) = (4k+2)cos[(4k+2)π/2+π/3] = (4k+2)cos[π+π/3]
= -(4k+2)/2 = -(2k+1)
a(4k+3) = (4k+3)cos[(4k+3)π/2+π/3] = (4k+3)cos[3π/2+π/3]
= (4k+3)sin(-π/3) = -(4k+3)3^(1/2)/2.
S(2002) = [a(1) + a(5) + ...+ a(2001)] + [a(2) + a(6) + ...+ a(2002)] + [a(3) + a(7) + ...+ a(1999)] + [a(4) + a(8) + ...+ a(2000)]
= -3^(1/2)/2[1 + 5 + ...+ 2001] - [1 + 3 + ...+ 1001] -3^(1/2)/2[3 + 7 + ...+ 1999] + [2 + 4 + ...+ 1000]
= -3^(1/2)/2[1 + 3 + 5 + ...+ 1999 + 2001] - [1 + 1001]^2/4 + [2 + 1000]*500/2
= -3^(1/2)/2[1 + 2001]^2/4 - 1002^2/4 + 501*500
= -3^(1/2)/2[2002]^2/4 - 501^2 + 501*500
= -3^(1/2)/2[1001]^2 - 501
已知数列{An}的通项公式An=n.cos(nπ/2+π/3),记Sn=a1+a2+…+an,求S2002
已知数列{an}的通项公式为an=nCOS[(n/2)兀+兀/3],记Sn=a1+a2+……+an,求S2002
已知数列{an}的通项公式为an=2n(cos^2nπ/3-sin^2nπ/3),求a1+a2+…+a100
已知数列{an}中,a1=1,前n项和sn=(n+2)an/3,求a2,a3求{an}的通项公式
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
数列(an)a1+a2+a3+...+an=3^n+2求an的通项公式
已知在数列an中,前n项和Sn=n²+n,求①a1,a2,a3,②数列an的通项公式an
已知数列an中,sn=n^2-6n,若设Tn=|a1|+|a2|+...+|an|.1.求an的通项公式2.Tn
已知数列an,a1=3,sn=2a(n+1)+1,求数列an的通项公式
已知数列{an}的前n项积Tn=a1.a2.a3.an=3的n方+n/2,求数列{an}的通项公式
已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,.求an的通项公式
已知数列{an}中,a1=1,nSn+1-(n+1)Sn=n^2+n 求a2的值和{sn}的通项公式