一个三阶矩阵A ,把第一列的两倍加到第二列,然后再把第一列和第三列交换,得到矩阵B,然后B=?有没有两种
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:03:07
一个三阶矩阵A ,把第一列的两倍加到第二列,然后再把第一列和第三列交换,得到矩阵B,然后B=?有没有两种
表达形式
B=AE12(2)E13
B=AE13E32(2)
为什么?
表达形式
B=AE12(2)E13
B=AE13E32(2)
为什么?
两种表达都对
楼上的那位老师貌似没有看清楚题目,题目中的两种表达并不是初等矩阵的交换
第一种是按照列初等变换的顺序
把第一列的两倍加到第二列:A*E(1,2(2)
再把第一列和第三列交换:A*E(1,2(2))*E(1,3)
所以B=AE(1,2(2))E(1,3)
第二种是交换列初等变换的顺序
把第一列和第三列交换:A*E(1,3)
再把第三列(原为第一列)的两倍加到第二列:A*E(1,3)*E(3,2(2))
所以B=AE(1,3)E(3,2(2))
楼上的那位老师貌似没有看清楚题目,题目中的两种表达并不是初等矩阵的交换
第一种是按照列初等变换的顺序
把第一列的两倍加到第二列:A*E(1,2(2)
再把第一列和第三列交换:A*E(1,2(2))*E(1,3)
所以B=AE(1,2(2))E(1,3)
第二种是交换列初等变换的顺序
把第一列和第三列交换:A*E(1,3)
再把第三列(原为第一列)的两倍加到第二列:A*E(1,3)*E(3,2(2))
所以B=AE(1,3)E(3,2(2))
一个三阶矩阵A ,把第一列的两倍加到第二列,然后再把第一列和第三列交换,得到矩阵B,然后B=?有没有两种
若A为三阶方阵,将矩阵A第一列与第二列交换得矩阵B ,再把矩阵B的第二列加到第三列得矩阵C,则满足AQ=C的可逆矩阵Q为
若A为三阶方阵,将矩阵A第一列与第二列交换得矩阵B ,再把矩阵B的第二列加到第三列得矩阵C,
矩阵初等行变换设A是三阶矩阵,将A的第一列与第二列交换得到B,再将B的第二列加到第三列得到C,则满足AQ=C的可逆矩阵Q
设A是3阶方阵,将A的第一列与第二列交换得B,再把B的第二列加到第三列得C,则满足AQ=C的可逆矩阵Q为
若A为三阶方阵,将矩阵A第一行与第二行交换得矩阵B ,再把矩阵B的第二列加到第三列得矩阵C,则满足PAQ=C
在MATLAB里面,如何把矩阵A的第二列和第四列变成一个新的矩阵B
设A,B都是3阶矩阵,将A的第一列与第二列互换得C,B的第一行加到第二行得D
设A为三阶矩阵,将A的第二行加到第一行得B,再将B的第一列的-1倍加到第二列得C ,记 P=(110,010,001)(
设A是3阶矩阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,求矩阵D,使得AD=C.
A是一个n阶矩阵,交换A的第i列和第j列后,再交换第i行和第j行,得到矩阵B:
矩阵a的两行交换一下,或两列交换一下,变成了矩阵b,a=b?