e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1
e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1
任一n维向量必能由n维初始单位向量组e1,e2,…,en线性表示.这句话正确还是错误?
证明线性无关的题目.设a1,a2,a3...an为一组n维向量,已知n维单位向量e1,e2,e3.en 都可由其线性表示
证明:如果n维基本单位向量组e1、e2……en可以由n维向量组a1、a2…an线性表示,则后面的向量组线性无关.
已知e1,e2是平面向量的一组基底,且a=e1+e2,b=3e1-2e1,c=2e1+3e2
已知向量e1,e2是平面内的一组基底(1)若AB=e1+e2,BC=2e1+8e2,CA=te1-t^2e2,且A,B,
证明如果n维单位坐标向量组E1,E2,E3.En可以由n维向量组a1,a2,a3...an线性表示,则向量组a1,a2,
已知两个向量e1,e2满足|e1|=2,|e2|=1,e1,e2的夹角为60,如果向量2te1+7e2与向量e1+te2
已知向量e1,e2是互相垂直的单位向量,且向量a=3向量e1+2向量e2,向量b=-3向量e1+4向量e2,则向量a乘向
已知e1,e2是相互垂直的单位向量,且a=3e1+2e2
e1,e2是两个单位向量,a=e1-2e2,b=5e1+4e2,且a⊥b,则e1e2的夹角为
【高一数学】设向量e1,e2满足|e1|=2,|e2|=1且e1,e2的夹角为60°