已知斜率为1的直线L与椭圆(x²/4)+(y²/2)=1交于A,B两点,当△AOB面积最大时,求直线
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:16:02
已知斜率为1的直线L与椭圆(x²/4)+(y²/2)=1交于A,B两点,当△AOB面积最大时,求直线L的方程
直线L的方程是y=x+b.
联立:y=x+b、x^2/4+y^2/2=1,消去y,得:x^2/4+(x+b)^2/2=1,
∴x^2+2(x^2+2bx+b^2)=4,∴3x^2+4bx+2b^2-4=0.
∵点A、B都在直线L上,∴可令A、B的坐标分别是(m,m+b)、(n,n+b).
显然,m、n是方程3x^2+4bx+2b^2-4=0的两根,∴由韦达定理,有:
m+n=-4b/3、mn=(2b^2-4)/3.
改写直线L的方程,得:x-y+b=0,∴点O的AB的距离d=|b|/√2.
又|AB|=√[(m-n)^2+(m+b-n-b)^2]=√2×√[(m+n)^2-4mn]
=√2×√[16b^2/9-4(2b^2-4)/3]=(4/3)√(2b^2-3b^2+6)=(4/3)√(6-b^2).
∴△AOB的面积
=(1/2)|AB|d=(1/2)(|b|/√2)(4/3)√(6-b^2)
=(√2/3)√(6b^2-b^4)=(√2/3)√[9-(9-9b^2+b^4)]
=(√2/3)√[9-(3-b^2)^2].
∴当b^2=3时,△AOB的面积有最大值,由b^2=3,得:b=√3,或b=-√3.
∴满足条件的直线L的方程有两条,分别是:y=x=√3; y=x-√3.
联立:y=x+b、x^2/4+y^2/2=1,消去y,得:x^2/4+(x+b)^2/2=1,
∴x^2+2(x^2+2bx+b^2)=4,∴3x^2+4bx+2b^2-4=0.
∵点A、B都在直线L上,∴可令A、B的坐标分别是(m,m+b)、(n,n+b).
显然,m、n是方程3x^2+4bx+2b^2-4=0的两根,∴由韦达定理,有:
m+n=-4b/3、mn=(2b^2-4)/3.
改写直线L的方程,得:x-y+b=0,∴点O的AB的距离d=|b|/√2.
又|AB|=√[(m-n)^2+(m+b-n-b)^2]=√2×√[(m+n)^2-4mn]
=√2×√[16b^2/9-4(2b^2-4)/3]=(4/3)√(2b^2-3b^2+6)=(4/3)√(6-b^2).
∴△AOB的面积
=(1/2)|AB|d=(1/2)(|b|/√2)(4/3)√(6-b^2)
=(√2/3)√(6b^2-b^4)=(√2/3)√[9-(9-9b^2+b^4)]
=(√2/3)√[9-(3-b^2)^2].
∴当b^2=3时,△AOB的面积有最大值,由b^2=3,得:b=√3,或b=-√3.
∴满足条件的直线L的方程有两条,分别是:y=x=√3; y=x-√3.
已知斜率为1的直线L与椭圆(x²/4)+(y²/2)=1交于A,B两点,当△AOB面积最大时,求直线
已知中心在原点的椭圆方程为X^2/3+y^2=1,斜率为1的直线L交椭圆于A.B两点,求三角形AOB面积最大时,直线L的
过椭圆X^2/2+y^2=1的一个焦点F作直线l交椭圆于A,B两点,中心为O,当△AOB面积最大时,求直线l的方程
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A.B两点.椭圆中心为O.当三角形AOB面积最大时,求直线l的方
过椭圆x^2/2+y^2=1的一个焦点F作直线l交椭圆于A,B两点,中心为O当三角形AOB面积最大时,求直线l的方程
斜率为1的直线与椭圆x^2/4+y^2/2=1交于a,b两点,三角形oab面积最大时,直线方程是
斜率为1,在y轴上的截距为b的直线L与椭圆x2/4+y2/2=1交于A,B两点,o是原点,当△AOB的面积最大时,求L的
斜率为1的直线l与椭圆x2/4+y2/2=1交于两点A,B.O是坐标原点,当三角形AOB面积最大时
椭圆X^2 / 4 + Y^2 =1 直线L斜率为k且经过M(0,2)的直线与椭圆交于A,B两点 ,角AOB为锐角,求k
直线y=kx+b与椭圆x²/4+y²=1交于A、B两点,若|AB|=2,△AOB的面积为1,求直线A
直线x+y-1=0与椭圆x^2/4+y^2=1 交于A、B两点,原点为O,求三角形AOB的面积
如图,直线y=kx+b与椭圆x^2/4+y^2=1,交于A、B两点,记△AOB的面积为S.