解一元四次方程,要过程
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:45:38
解一元四次方程,要过程
x^4+2x^3+x^2-1=0
x^4+2x^3+x^2-1=0
x ^ 4 + 2 x ³ + x ² - 1 = 0
x ²(x ² + 2 x + 1)- 1 = 0
x ²(x + 1)² - 1 = 0
【 x(x + 1)+ 1】【 x(x + 1)- 1 】= 0
(x ² + x + 1)(x ² + x - 1)= 0
∴ x ² + x + 1 = 0 ①
x ² + x - 1 = 0 ②
① x ² + x = - 1
x ² + x + (1 / 2)² = - 1 + (1 / 2)²
(x + 1 / 2)² = - 1 + 1 / 4
(x + 1 / 2)² = - 3 / 4
∵ (x + 1 / 2)² ≥ 0
∴ ① 方程无解.
② x ² + x = 1
x ² + x + (1 / 2)² = 1 + (1 / 2)²
(x + 1 / 2)² = 1 + 1 / 4
(x + 1 / 2)² = 5 / 4
x + 1 / 2 = ± √5 / 2
x = ± √5 / 2 - 1 / 2
x1 = √5 / 2 - 1 / 2 = (√5 - 1)/ 2
x2 = - √5 / 2 - 1 / 2 = (- √5 - 1)/ 2
综上,x = (√5 - 1)/ 2 或 (- √5 - 1)/ 2
参考公式:(平方差公式:a ² - b ² = (a + b)(a - b))
x ²(x ² + 2 x + 1)- 1 = 0
x ²(x + 1)² - 1 = 0
【 x(x + 1)+ 1】【 x(x + 1)- 1 】= 0
(x ² + x + 1)(x ² + x - 1)= 0
∴ x ² + x + 1 = 0 ①
x ² + x - 1 = 0 ②
① x ² + x = - 1
x ² + x + (1 / 2)² = - 1 + (1 / 2)²
(x + 1 / 2)² = - 1 + 1 / 4
(x + 1 / 2)² = - 3 / 4
∵ (x + 1 / 2)² ≥ 0
∴ ① 方程无解.
② x ² + x = 1
x ² + x + (1 / 2)² = 1 + (1 / 2)²
(x + 1 / 2)² = 1 + 1 / 4
(x + 1 / 2)² = 5 / 4
x + 1 / 2 = ± √5 / 2
x = ± √5 / 2 - 1 / 2
x1 = √5 / 2 - 1 / 2 = (√5 - 1)/ 2
x2 = - √5 / 2 - 1 / 2 = (- √5 - 1)/ 2
综上,x = (√5 - 1)/ 2 或 (- √5 - 1)/ 2
参考公式:(平方差公式:a ² - b ² = (a + b)(a - b))