等比数列{a}的前n项和为Sn=2^n-1,则a1^2+a2^2+.an^2=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 00:10:24
等比数列{a}的前n项和为Sn=2^n-1,则a1^2+a2^2+.an^2=
Sn=2^n-1
S(n-1)=2^(n-1)-1=2^n/2-1
Sn-S(n-1)=an=2^n-1-2^n/2+1=2^n/2=2^(n-1)
an^2=(2^(n-1))^2=2^(2n-2)
a(n-1)^2=2^(2(n-1)-2)=2^(2n-2-2)=2^(2n-2)*2^(-2)
an^2/a(n-1)^2=2^(2n-2)/2^(2n-2)*2^(-2)=2^2=4
所以数列(an^2)也是等比数列,公比是4
a1^2=2^(2*1-2)=1
则
a1^2+a2^2+.an^2
=1*(4^n-1)/(4-1)
=(4^n-1)/3
S(n-1)=2^(n-1)-1=2^n/2-1
Sn-S(n-1)=an=2^n-1-2^n/2+1=2^n/2=2^(n-1)
an^2=(2^(n-1))^2=2^(2n-2)
a(n-1)^2=2^(2(n-1)-2)=2^(2n-2-2)=2^(2n-2)*2^(-2)
an^2/a(n-1)^2=2^(2n-2)/2^(2n-2)*2^(-2)=2^2=4
所以数列(an^2)也是等比数列,公比是4
a1^2=2^(2*1-2)=1
则
a1^2+a2^2+.an^2
=1*(4^n-1)/(4-1)
=(4^n-1)/3
等比数列{a}的前n项和为Sn=2^n-1,则a1^2+a2^2+.an^2=
若An为等比数列.前N项和是Sn=2的N次方-1 则a1平方加a2平方.+An平方=
等比数列的证明方式数列An的前n项和为Sn,A1=1,A(n+1)=2Sn+1,证明数列An是等比数列
等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4=( )
已知数列an的前n项和为Sn=n^2+2n,求和:1/(a1*a2)+1/(a2*a3)+...+1/(an*a(n+1
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知等比数列AN的前N项和,SN=2^N-A则a1^2+a2^2+a3^2+.+an^2等于
已知数列an的前n项和为sn,4sn=an^2+2an-3,若a1,a2,a3成等比数列,且n大于等于3时a大于0.(1
数列{an}的前n项和为sn=2n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
设数列{an}的前n项和为Sn=2n^2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1.
1.设数列{An}的前n项和为Sn=2n^2,{bn}为等比数列,且A1=b1,b2(A2-A1)
设数列{an}的前n项和为Sn=2n²,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1,