如图,已知在平行四边形ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=C
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:02:36
如图,已知在平行四边形ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连接GE,EH,HF,FG 求证:四边形GEHF是平行四边形
证明:1,在△EBG&△FDH中
∵AB∥CD,AB=CD(平行四边形性质)
∴∠EBG=∠FDH(两条平行线和第三条直线相交,内错角相等.)
∵AG=CH(已知)
∴BG=DH∵BE=DF(已知)
∴△EBG≌△FDH(两边和夹角对应相等,两三角形全等.)
∴EG=FH(全等三角形性质)①
又在△FBG&△EDH中
∵BF=BE+EF=DE+EF=DF
∴△FBG≌△EDH(两边和夹角对应相等,两三角形全等.)
∴GF=EH(全等三角形性质)②
由①②得结论:四边形GEHF是平行四边形(两个对应边分别相等的四边形是平行四边形.)
再问: 帮我看一下怎么写对不对
再答: 怎么写
再问:
再问: 我写的对吗
再答: 我觉得可以
再问: 哦 谢谢
∵AB∥CD,AB=CD(平行四边形性质)
∴∠EBG=∠FDH(两条平行线和第三条直线相交,内错角相等.)
∵AG=CH(已知)
∴BG=DH∵BE=DF(已知)
∴△EBG≌△FDH(两边和夹角对应相等,两三角形全等.)
∴EG=FH(全等三角形性质)①
又在△FBG&△EDH中
∵BF=BE+EF=DE+EF=DF
∴△FBG≌△EDH(两边和夹角对应相等,两三角形全等.)
∴GF=EH(全等三角形性质)②
由①②得结论:四边形GEHF是平行四边形(两个对应边分别相等的四边形是平行四边形.)
再问: 帮我看一下怎么写对不对
再答: 怎么写
再问:
再问: 我写的对吗
再答: 我觉得可以
再问: 哦 谢谢
如图,已知在平行四边形ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=C
如图,在平行四边形ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,
如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接
如图所示,已知在平行四边形ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA的DC的延长线上,且AG
平行四边形ABCD EF为AD.BC中点GH是对角线BD上两点,be=df,点g,h分别在ba,和dc的延长线上
初二数学平行四边形题平行四边形ABCD中,BD为对角线,点G、H分别为BA、DC的延长线上,且AG=CH,E,F是BD上
已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF
如图,在平行四边形ABCD中,E,F分别是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形,
如图,在平行四边形ABCD中,E,F分别是对角线BD上的两点,且BE=DF.证:四边形AECF是平行四边形
如图,在平行四边形ABCD中,E、F为对角线BD上的两点,BE=DF,AG=CH,求证:四边形GEHF是平行四边形
如图,在平行四边形ABCD中,E,F分别是DC,BA延长线上的点,且AE//CF,交BC,AD于点G,H.求证:EG=F
如图,在平行四边形ABCD中,E,F分别是DC,BA延长线上的点且AE‖CF,交BC,AD于点G,H,求证:EG=FH