求圆盘定理推广的证明即:A=(aij)是n*n复矩阵,Ri=求和(j不等于i)(aij的绝对值),则A的所有特征值都属于
求圆盘定理推广的证明即:A=(aij)是n*n复矩阵,Ri=求和(j不等于i)(aij的绝对值),则A的所有特征值都属于
设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=
设A=(aij)是三阶非零矩阵,|A|为其行列式,Aij为元素aij的代数余子式,且满足Aij+aij=0(i,j=1,
设A为n阶非零实方阵,A的每一个元素aij等于它的代数余子式,即aij=Aij,(i,j=1,2,3,……n)证明A可逆
设n阶矩阵A=(aij),其中aij=|i-j|,求|A|
设A为n阶非零实方阵,A的每一个元素aij等于它的代数余子式,即aij=Aij,(i,j=1,2,3,……n)证明A可逆
线性代数 若n阶方阵A满足条件aij=Aij(i,j=1,2,3…n),其中Aij是aij的代数余子式,则A*=
对角矩阵相似问题A=(aij)n*n,是上三角矩阵,a的主对角元相等,且至少有一个元素aij不等于0(i
高等代数行列式问题n阶矩阵A=(aij),aii=a,aij=b/2(j=n-i+1),其余aij=0.求det(A)的
设A=(aij)为正交矩阵,且绝对值A=1,试证Aij=aij,这里Aij是A中元素aij的代数余子式?
一道线性代数题已知矩阵Aij=(aij)n*n,对任意i,j,k满足aij*ajk=aik,aii=1,求A的秩r(A)
对角阵一定是方阵吗?定义矩阵A 满足元素aij 是aij=0 i不等于j (i,j=1,2,n)