设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)>0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 06:44:32
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)>0
1.求f(0)值
2.判断函数奇偶性
3.如果f(x)+f(2+x)<2,求x的取值范围
1.求f(0)值
2.判断函数奇偶性
3.如果f(x)+f(2+x)<2,求x的取值范围
1、
f(0 + 0) = f(0) + f(0)
f(0) = 2f(0)
f(0) = 0
2、
f[x + (-x)] = f(x) + f(-x)
f(0) = f(x) + f(-x)
0 = f(x) + f(-x)
f(-x) = -f(x)
根据定义,这个是奇函数
3、
因为f(x)解析式无法求出(是抽象函数),所以先求出f(x) = 2时的x值
f(1/3 + 1/3) = f(1/3) + f(1/3) = 1 + 1 = 2
f(2/3) = 2
f(x) + f(2+x) < 2
f[x + (2 + x)] < f(2/3)
f(2x + 2) < f(2/3)
要解上述不等式,需求出f(x)单调性
因为 当x>0时,f(x)>0,f(x)是奇函数,所以
当x < 0时,f(x)< 0
又假设 a > b > 0,
f(a + b) = f(a) + f(b)
因为 a + b > a ,b > 0,f(b) > 0,
所以f(a + b) > f(a)
所以f(x)在x>0时单调递增
又因为f(x)是奇函数,所以f(x)在R上单调递增
上述不等式f(2x + 2) < f(2/3)
得 2x + 2 < 2/3
2x < -4/3
x < -2/3
f(0 + 0) = f(0) + f(0)
f(0) = 2f(0)
f(0) = 0
2、
f[x + (-x)] = f(x) + f(-x)
f(0) = f(x) + f(-x)
0 = f(x) + f(-x)
f(-x) = -f(x)
根据定义,这个是奇函数
3、
因为f(x)解析式无法求出(是抽象函数),所以先求出f(x) = 2时的x值
f(1/3 + 1/3) = f(1/3) + f(1/3) = 1 + 1 = 2
f(2/3) = 2
f(x) + f(2+x) < 2
f[x + (2 + x)] < f(2/3)
f(2x + 2) < f(2/3)
要解上述不等式,需求出f(x)单调性
因为 当x>0时,f(x)>0,f(x)是奇函数,所以
当x < 0时,f(x)< 0
又假设 a > b > 0,
f(a + b) = f(a) + f(b)
因为 a + b > a ,b > 0,f(b) > 0,
所以f(a + b) > f(a)
所以f(x)在x>0时单调递增
又因为f(x)是奇函数,所以f(x)在R上单调递增
上述不等式f(2x + 2) < f(2/3)
得 2x + 2 < 2/3
2x < -4/3
x < -2/3
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)>0
设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)
设函数y=f(x)是定义域为R,并且满足f(x+y)=f(x)+f(y),f(1/3)=1,且当x>0时,f(x)>0
设f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f (y),且当x大于0时,f(x)>1
设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1
设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)
已知定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y),且当x>0时f(x)<0; (1)求f(0) (2)
设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(13)=1
已知函数f(x)定义域在R上的函数,且对任意的x,y都有f(x+y)=f(x)+f(y)-1成立.当x>0时,f(x)>
设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立
若定义域为R函数f(x)满足f(x+y)=2*f(x)*f(y),且f(0)不等于0,证明f(x)是偶函数