作业帮 > 数学 > 作业

已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是(

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 11:24:26
已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是(  )
A. (
5
,+∞)
已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是(
设f(x)=x3+ax2+bx+c,由抛物线的离心率为1,可知f(1)=1+a+b+c=0,故c=-1-a-b,
所以f(x)=(x-1)[x2+(1+a)x+a+b+1]的另外两个根分别是一个椭圆一个双曲线的离心率,
故g(x)=x2+(1+a)x+a+b+1,有两个分别属于(0,1),(1,+∞)的零点,
故有g(0)>0,g(1)<0,即a+b+1>0且2a+b+3<0,
利用线性规划的知识,可确定a2+b2的取值范围是(5,+∞).
故选D.