设数列{an}前n项和Sn,且a1=1,Sn=4a(n-1)+2(n≥2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 15:06:30
设数列{an}前n项和Sn,且a1=1,Sn=4a(n-1)+2(n≥2)
(1)设bn=a(n+1)-2an,求证{bn}是等比数列
(2)设cn=an/2^n,求证{cn}是等差数列
注:n+1,n-1为下标.
(1)设bn=a(n+1)-2an,求证{bn}是等比数列
(2)设cn=an/2^n,求证{cn}是等差数列
注:n+1,n-1为下标.
1、a1=1,Sn=4a(n-1)+2
S(n-1)=4a(n-2)+2
an=4[a(n-1)-a(n-2)]
an-2a(n-1)=2*[a(n-1)-2a(n-2)]
[an-2a(n-1)]/[a(n-1)-2a(n-2)]=2
所以bn/b(n-1)=[a(n+1)-2an]/[an-2a(n-1)]=2
{bn}是等比数列
2、cn=an/2^n
cn-c(n-1)=an/2^n-a(n-1)/2^(n-1)=an-2a(n-1)/2^n
因为:[an-2a(n-1)]/[a(n-1)-2a(n-2)]=2
所以:b(n-1)=an-2a(n-1)=b1*2^(n-2)
b1=a2-2a1=5-2=3
所以:cn-c(n-1)=an/2^n-a(n-1)/2^(n-1)=an-2a(n-1)/2^n=3*2^(n-2)/2^n=3/4
所以:
{cn}是等差数列
S(n-1)=4a(n-2)+2
an=4[a(n-1)-a(n-2)]
an-2a(n-1)=2*[a(n-1)-2a(n-2)]
[an-2a(n-1)]/[a(n-1)-2a(n-2)]=2
所以bn/b(n-1)=[a(n+1)-2an]/[an-2a(n-1)]=2
{bn}是等比数列
2、cn=an/2^n
cn-c(n-1)=an/2^n-a(n-1)/2^(n-1)=an-2a(n-1)/2^n
因为:[an-2a(n-1)]/[a(n-1)-2a(n-2)]=2
所以:b(n-1)=an-2a(n-1)=b1*2^(n-2)
b1=a2-2a1=5-2=3
所以:cn-c(n-1)=an/2^n-a(n-1)/2^(n-1)=an-2a(n-1)/2^n=3*2^(n-2)/2^n=3/4
所以:
{cn}是等差数列
设数列{an}前n项和Sn,且a1=1,Sn=4a(n-1)+2(n≥2)
设数列{an}的前n项和Sn,且a1=1,Sn=4an+2(n∈N*)
设数列an的前n项和为sn,且a1为1 ,Sn+1=4an+2(n∈N正)
已知数列{an}的前n项和为Sn,且a1=2,3Sn=5an-A(n-1)+3S(n-1)(n≥2,n属于N*)设bn=
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
设数列{an}的前n项和Sn,已知首项a1=3,且S(n+1)+Sn=2a(n+1),求此数列的通项公式和前n项和Sn
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
设数列{an}的前n项和为Sn,已知a1=5,且nSn+1=2n(n+1)+(n+1)Sn
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
设数列an的前n项和为Sn.已知首项a1等于3,且S(n+1)+Sn=2a(n+1)求通项公式以及前n项和sn
设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,an≠0,n=2,3,4……(1)