口袋中装有n-1只黑球和1只白球,每次从中任取一球,并换入一只黑球,问第k次摸球时,摸到的是黑球的概率是
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 14:24:57
口袋中装有n-1只黑球和1只白球,每次从中任取一球,并换入一只黑球,问第k次摸球时,摸到的是黑球的概率是
分析:
第一种情况:
前k-1次一直没有出现白球,每次从中任取一球,并换入一只黑球,那么第k次摸到黑球的概率
Pa=(n-1)/n
第二种情况:
前k-1次已经出现了白球,每次从中任取一球,并换入一只黑球,那么第k次摸到黑球的概率
分如下k种可能:
第一次摸到白球,第k次摸到黑球的概率
P1=1/n*(n/n)^(k-1)
第二次摸到白球,第k次摸到黑球的概率
P2=(n-1)/n*1/n*(n/n)^(k-2)
第三次摸到白球,第k次摸到黑球的概率
P3=[(n-1)/n]^2*1/n*(n/n)^(k-3)
第k-1次摸到白球,第k次摸到黑球的概率
Pk-1=[(n-1)/n]^(k-2)*1/n*(n/n)
Pb=P1+P2+P3+...+Pk-1
=1/n*{[(n-1)/n]^0+[(n-1)/n]^1+[(n-1)/n]^2+.+[(n-1)/n]^(k-2)}
=1/n*{1-[(n-1)/n]^(k-1)}/[1-(n-1)/n]
=1-[(n-1)/n]^(k-1)
所以,每次从中任取一球,并换入一只黑球,问第k次摸球时,摸到的是黑球的概率是
P=Pa+Pb
=(n-1)/n+1-[(n-1)/n]^(k-1)
这道题也可以这么考虑,前面k-1次全部摸到黑球的补集1-[(n-1)/n]^(k-1),那就是前k-1出现了白球.
第一种情况:
前k-1次一直没有出现白球,每次从中任取一球,并换入一只黑球,那么第k次摸到黑球的概率
Pa=(n-1)/n
第二种情况:
前k-1次已经出现了白球,每次从中任取一球,并换入一只黑球,那么第k次摸到黑球的概率
分如下k种可能:
第一次摸到白球,第k次摸到黑球的概率
P1=1/n*(n/n)^(k-1)
第二次摸到白球,第k次摸到黑球的概率
P2=(n-1)/n*1/n*(n/n)^(k-2)
第三次摸到白球,第k次摸到黑球的概率
P3=[(n-1)/n]^2*1/n*(n/n)^(k-3)
第k-1次摸到白球,第k次摸到黑球的概率
Pk-1=[(n-1)/n]^(k-2)*1/n*(n/n)
Pb=P1+P2+P3+...+Pk-1
=1/n*{[(n-1)/n]^0+[(n-1)/n]^1+[(n-1)/n]^2+.+[(n-1)/n]^(k-2)}
=1/n*{1-[(n-1)/n]^(k-1)}/[1-(n-1)/n]
=1-[(n-1)/n]^(k-1)
所以,每次从中任取一球,并换入一只黑球,问第k次摸球时,摸到的是黑球的概率是
P=Pa+Pb
=(n-1)/n+1-[(n-1)/n]^(k-1)
这道题也可以这么考虑,前面k-1次全部摸到黑球的补集1-[(n-1)/n]^(k-1),那就是前k-1出现了白球.
口袋中装有n-1只黑球和1只白球,每次从中任取一球,并换入一只黑球,问第k次摸球时,摸到的是黑球的概率是
概率与统计问题 急袋中装有1个黑球和n-1个白球,每次从中随机摸出一球,并放入白球,连续进行,问第K次摸到白球的概率?
一袋中装有N-1只黑球及一只白球,每次从袋中随机地摸出一球,并换入一只黑球,这样继续下去,问第K次摸球时,摸到黑球的概率
口袋中有n个黑球、1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.求第k 次取到黑球的概率
一个口袋中装有m个白球,n个黑球,从口袋中每次拿一个球不放回,第k次拿到黑球的概率是( )
袋中装N-1个黑球和1个白球,每次从袋中随机摸一个球,并投入一个黑球,这样继续.问第k次摸球摸到黑球的概率?
一个口袋有m个白球和n个黑球,从中每次取一个球不放回,第k次取到黑球的概率是多少?
口袋中有9个黑球、1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.求第k 次取到黑球的概率.
口袋中有2个白球,每次从口袋中随 机地摸出一球,并换入一只黑球.求第k 次取到黑球的概率.
有两只口袋,甲袋中装有3只白球,2只黑球;乙袋中装有2只白球,5只黑球,现任选一袋,并从中任取一球,则此球为白球的概率为
一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,从中每次摸出两个球
一个口袋中有a黑球,b个白球,每次任取一球(不放回),第k次取到黑球的概率