第一题:正方体ABCD-A1B1C1D1Z中,M为AD1中点,O为AC中点,求证①MO∥平面D1DCC1②若棱长为a,求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:52:32
第一题:正方体ABCD-A1B1C1D1Z中,M为AD1中点,O为AC中点,求证①MO∥平面D1DCC1②若棱长为a,求MO
第二题:四棱锥P-ABCD中,其中底面ABCD为平行四边形,E为PC中点,证明:PA∥平面BED
第二题:四棱锥P-ABCD中,其中底面ABCD为平行四边形,E为PC中点,证明:PA∥平面BED
第一题:题目中的Z是多余的,可能是你用拼音输入法造成的,应删去.
第一个问题
∵M、O分别是AD1、AC的中点, ∴MO是△ACD1的中位线, ∴MO∥D1C,
∴MO∥平面D1DCC1.
第二个问题
∵MO是△ACD1的中位线, ∴MO=CD1/2.
显然有:CD1=√2a, ∴MO=√2a/2.
第二题:
令BD与AC的交点为O.
∵ABCD是平行四边形, ∴O是AC的中点,又E是PC的中点, ∴EO是△PAC的中位线,
∴PA∥EO,而EO在平面BED上, ∴PA∥平面BED.
第一个问题
∵M、O分别是AD1、AC的中点, ∴MO是△ACD1的中位线, ∴MO∥D1C,
∴MO∥平面D1DCC1.
第二个问题
∵MO是△ACD1的中位线, ∴MO=CD1/2.
显然有:CD1=√2a, ∴MO=√2a/2.
第二题:
令BD与AC的交点为O.
∵ABCD是平行四边形, ∴O是AC的中点,又E是PC的中点, ∴EO是△PAC的中位线,
∴PA∥EO,而EO在平面BED上, ∴PA∥平面BED.
第一题:正方体ABCD-A1B1C1D1Z中,M为AD1中点,O为AC中点,求证①MO∥平面D1DCC1②若棱长为a,求
如图在四棱锥PABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,求证:PB∥平面ACM
正方体ABCD-A1B1C1D1中,O为BD中点,AB=a,G为C1C中点,(1)求证A1O⊥OG (2)求点A1到平面
已知正方体ABCD-A1B1C1D1的棱长为1,点O是BD1的中点,M是AA1的中点,求直线MO与AD1所成角的大小
在正方体ABCD一A1B1C1D1中,M为棱CC1的中点,AC交BD于点o,求证:A1o丄平面MBD
在正方体ABCD-A1B1CID1中,M为CC1中点,AC交BD于点O,求证A1O垂直与平面MBD
如图,在正方体ABCD-A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD.
如图所示,在正方体ABCD-A1B1C1D1中,M为棱CC1的中点,AC交BD于点O,求证A1O⊥平面MBD
在正方体ABCD-A'B'C'D'中,P为DD'中点,求证:平面PAC⊥于平面B'AC
正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1中点,求证:AC//平面B1DE
正方体ABCD-A1B1C1D1中,P为DD1的中点,O为底面ABCD中心,求证:B1O⊥平面PAC
.已知:如图正方体ABCD-A1B1C1D1中,AA1=a,E,F分别为BC,DC的中点,求证:求异面直线AD1与EF所