设函数f(x)在[a,b]可导 且f'(x)
设函数f(x)在[a,b]可导 且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
设f(x),g(x)是定义在[a,b]上的可导函数,且f`(x)>g`(x),令F(x)=f(x)-g(x),则F(x)
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]
设f(x)在[a,b]二阶可导,且f''(x)
设函数f(x)={x^2,x≤1;ax+b,x>1}为使函数f(x)在x=1处连续且可导,a、b应取什么值?
设函数f(x)={x平方,x≤1}.{ax+b,x>1}为了使函数f(x)在x=1处连续且可导,a、b应取什么值
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
设函数f(x)在区间(a,b)内二阶可导,且f''(x)≥0
设f(x)是[a,b]上的可微函数,且其导函数有界,证明:f(x)是[a,b]上的绝对连续函数