已知数列an满足an=log(n+1)(n+2),n∈ N:,我们把使a1·a2·…·ak为整数的数k叫希望数,则区间【
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:37:47
已知数列an满足an=log(n+1)(n+2),n∈ N:,我们把使a1·a2·…·ak为整数的数k叫希望数,则区间【1,2012】内的和M是多少
由对数换底公式得an=log(n+1)(n+2)=lg(n+2)/lg(n+1),所以a1*a2*……*ak=lg(k+2)/lg2为整数,设为c,
即lg(k+2)/lg2=c log2(k+2)=c(由对数换底公式得的)
则k=2^c-2,k属于[1,2012],所以可以得到c的范围[2,10],
因为2^10-2=10222012,所以最后问题归结为求数列bn=2^n-2的和,其中n范围是[2,10],由等比数列公式可以得到希望数的和=(2^2-2)+(2^3-2)+.+(2^10-2)
4(1+2^2+.+2^8)=4*(2^9-1)/(2-1)-2*9=2026
即lg(k+2)/lg2=c log2(k+2)=c(由对数换底公式得的)
则k=2^c-2,k属于[1,2012],所以可以得到c的范围[2,10],
因为2^10-2=10222012,所以最后问题归结为求数列bn=2^n-2的和,其中n范围是[2,10],由等比数列公式可以得到希望数的和=(2^2-2)+(2^3-2)+.+(2^10-2)
4(1+2^2+.+2^8)=4*(2^9-1)/(2-1)-2*9=2026
已知数列an满足an=log(n+1)(n+2),n∈ N:,我们把使a1·a2·…·ak为整数的数k叫希望数,则区间【
已知数列an满足an=log(n+1)(n+2),n∈ N:,我们把使a1·a2·…·ak为整数的数k叫理想数;
已知数列an满足an=log(n+1)(n+2),n∈ N:,我们把使a1·a2·…·ak为整数的数k叫做数列的理想数,
已知数列{an}满足:an=log(n+1)(n+2),n∈N+,我们把使a1•a2•a3•…•ak为整数的数k(k∈N
已知数列{an}(n∈N*)满足:an=logn+1(n+2)(n∈N*),定义使a1·a2·a3·……ak为整数的数k
已知数列{an}(n∈N*)满足:an=logn+1(n+2)(n∈N*),定义使a1·a2·a3·……ak为整数的数k
已知an=log[(n+1)(底数)](n+2)(n∈N*)我们把乘积a1·a2·a3…an为整数的数n叫l劣数
给定an=log(n+2),n属于N+,定义使a1*a2*...ak为整数的k,k属于N+,叫企盼数.
给定an=log(n+1)^(n+2)(n∈N*),给定乘积a1*a2*...*ak为整数叫做“理想数",则区间[1,2
若an=log(n+1)(n+2)(n∈N),我们把使乘积a1*a2……an为整数的数n叫做傲数,在区间(1,2011)
已知an=log(n+1)(n+2)(n∈N*).我们把使乘积a1•a2•a3•…•an为整数的数n叫做“优数”,则在区
已知an=log(n+1) (n+2),我们把乘积a1*a2*a3*……*an为整数的数n叫做“劣数”