讨论级数∑[n=0到∞]sin(npai + 1/根号(n+1))的敛散性,说明是绝对收敛条件收...
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 21:03:36
讨论级数∑[n=0到∞]sin(npai + 1/根号(n+1))的敛散性,说明是绝对收敛条件收...
讨论级数∑[n=0到∞]sin(npai + 1/根号(n+1))的敛散性,说明是绝对收敛条件收敛还是发散.
讨论级数∑[n=0到∞]sin(npai + 1/根号(n+1))的敛散性,说明是绝对收敛条件收敛还是发散.
通项sin(nπ + 1/√(n+1))=(-1)^n×sin(1/√(n+1)).
通项加绝对值后的级数是∑sin(1/√(n+1)),在n→∞时,sin(1/√(n+1))等价于1/√(n+1),而级数∑(1/√(n+1))发散,所以∑sin(1/√(n+1))发散,即原级数不绝对收敛.
对于∑(-1)^n×sin(1/√(n+1)),因为{sin(1/√(n+1))}单调减少且在n→∞时sin(1/√(n+1))的极限是0,所以由莱布尼兹判别法,级数∑(-1)^n×sin(1/√(n+1))收敛.
综上,原级数条件收敛.
通项加绝对值后的级数是∑sin(1/√(n+1)),在n→∞时,sin(1/√(n+1))等价于1/√(n+1),而级数∑(1/√(n+1))发散,所以∑sin(1/√(n+1))发散,即原级数不绝对收敛.
对于∑(-1)^n×sin(1/√(n+1)),因为{sin(1/√(n+1))}单调减少且在n→∞时sin(1/√(n+1))的极限是0,所以由莱布尼兹判别法,级数∑(-1)^n×sin(1/√(n+1))收敛.
综上,原级数条件收敛.
讨论级数∑[n=0到∞]sin(npai + 1/根号(n+1))的敛散性,说明是绝对收敛条件收...
【急】讨论级数∑(∞ n=1)[(-1)^(n+1)][sin(π/n+1)/π^(n+1)]的敛散性,若收敛是条件收敛
判别下列级数的敛散性,请说明是绝对收敛还是条件收敛 求和(n=1到无穷)(-1)^(n-1)*n!/n^n
判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛
判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散
∞ 利用敛散性判别法判别级数∑ sin(nπ+1/In n)是绝对收敛,条件收敛还是发散?n=2
判断级数∑(N=1,∞) (-1)^N/(N-lnN)的收敛性,是绝对收敛还是条件收敛
判断级数∑(∞ n=2) -1^n/2^n-1的敛散性,若收敛,是绝对收敛,还是条件收敛,为什么
证明级数∑(n=1到∞)(-1)^(n-1)*sin(π∕(n+1))是绝对收敛
判定级数(∞∑n-1)(-1)^n-1/ln(n+1)是否收敛?如果收敛,说明是条件收敛还是绝对收敛
判别级数∞∑n=1(-1)^n(1-cos1/n)是绝对收敛、条件收敛还是发散
Σn=2到无穷(-1)^n/(n+(-1)^n)^p判别级数敛散性,条件收敛还是绝对收敛