作业帮 > 综合 > 作业

已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q当PA⊥PQ时,点Q的横坐标的取值范围是______.

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 06:41:30
已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q当PA⊥PQ时,点Q的横坐标的取值范围是______.
已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q当PA⊥PQ时,点Q的横坐标的取值范围是______.
设P(a,b)  Q(x,y)   则

AP=(a+1,b)

PQ=(x-a,y-b)
由垂直关系得(a+1)(x-a)+b(y-b)=0
又P、Q在抛物线上即a2=b+1,x2=y+1,
故(a+1)(x-a)+(a2-1)(x2-a2)=0
整理得(a+1)(x-a)[1+(a-1)(x+a)]=0
而P和Q和A三点不重合即a≠-1   x≠a
所以式子可化为1+(a-1)(x+a)=0
整理得 a2+(x-1)a+1-x=0
由题意可知,此关于a的方程有实数解  即判别式△≥0
得(x-1)2-4(1-x)≥0解得x≤-3或x≥1
故答案为(-∞,-3]∪[1,+∞)