llim(n—>无穷)(a1^n+a2^n.+ak^n)^1/n 其中ai>=0,i=1,2,.,k.求极限
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 10:43:29
llim(n—>无穷)(a1^n+a2^n.+ak^n)^1/n 其中ai>=0,i=1,2,.,k.求极限
这个用迫敛性来做
a1^n+a2^n+……+ak^n
因为一共只有k个(即有限个)数,故在这k个数中,必有一个最大值amax
又有ai≥0
因此,可以得到不等式:
amax^n≤a1^n+a2^n+……+ak^n≤k*amax^n
同时开n次方,不等号不改变:
(amax^n)^(1/n)≤(a1^n+a2^n+……+ak^n)^(1/n)≤(k*amax^n)^(1/n)
即有:
amax≤(a1^n+a2^n+……+ak^n)^(1/n)≤k^(1/n)*amax
因为,
lim amax
=amax
lim k^(1/n)*amax
=amax*lim k^(1/n)
=amax*1
=amax
故,根据迫敛性,
lim (a1^n+a2^n+……+ak^n)^(1/n)=amax
其中amax=max{a1,a2,……,ak}
有不懂欢迎追问
a1^n+a2^n+……+ak^n
因为一共只有k个(即有限个)数,故在这k个数中,必有一个最大值amax
又有ai≥0
因此,可以得到不等式:
amax^n≤a1^n+a2^n+……+ak^n≤k*amax^n
同时开n次方,不等号不改变:
(amax^n)^(1/n)≤(a1^n+a2^n+……+ak^n)^(1/n)≤(k*amax^n)^(1/n)
即有:
amax≤(a1^n+a2^n+……+ak^n)^(1/n)≤k^(1/n)*amax
因为,
lim amax
=amax
lim k^(1/n)*amax
=amax*lim k^(1/n)
=amax*1
=amax
故,根据迫敛性,
lim (a1^n+a2^n+……+ak^n)^(1/n)=amax
其中amax=max{a1,a2,……,ak}
有不懂欢迎追问
llim(n—>无穷)(a1^n+a2^n.+ak^n)^1/n 其中ai>=0,i=1,2,.,k.求极限
微积分证明数列极限,设ai≥0,i=1,2,...,k,求证:lim(a1^n+a2^n+...+ak^n)^1/n=m
对于n∈N+,将n 表示n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak×20,当i=0时,ai
夹逼定理求极限,Xn=(A1^n+A2^n+……+Ak^n)开n次方,其中A1>A2>……>Ak>0
对于n∈N*,将n表示为n=a0×2^k+a1×2+a2×2 ^k-1 +…+ak-1×2^ 1 +ak×2 ^0;当i
设A=max{a1,a2,.am},其中ak>0,lim(a1^n+a2^n+…+am^n)当n趋于无穷时?
求极限k^2/(n^3+k^3) n趋于无穷,k=1到n
设ai>0,(i=1,2,...,n)求证:(a1+a2+...+an)/n
求极限,lim(1+n)(1+n^2)(1+n^4)-----(1+n^2n)=?(n趋于无穷)
已知数列{an}满足:an=log(n+1)(n+2),n∈N+,我们把使a1•a2•a3•…•ak为整数的数k(k∈N
数列{an}的通项公式an=log以(n+1)为底(n+2),定义使乘积ai=a1*a2*a3.*ak为整数的k
lim(n趋于正无穷)∑(下面k=1,上面n)(k/n^3)√(n^2-k^2),此题利用定积分求极限,