A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 14:50:03
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的λ1,λ2的特征向量,则k1α1+k2α2不再是A的特征向量?如何证明呢?另外若λ1,λ2是α1,α2是属于A的某个特征值所对应的特征向量.则α1和α2的线性组合k1α1+k2α2仍为A的属于这个特征值的特征向量,这又怎么证明呢?
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的λ1,λ2的特征向量,则k1α1+k2α2不再是A的特征向量?如何证明呢?另外若λ1,λ2是α1,α2是属于A的某个特征值所对应的特征向量.则α1和α2的线性组合k1α1+k2α2仍为A的属于这个特征值的特征向量,这又怎么证明呢?
第一个用反证
若 k1α1+k2α2≠0 是A的属于特征值a的特征向量
则 A(k1α1+k2α2) = a(k1α1+k2α2), 且k1≠0 且 k2≠0.
所以有 k1Aα1+k2Aα2 = k1λ1α1+k2λ2α2 = ak1α1+ak2α2
所以 k1(λ1-a)α1+k2(λ2-a)α2 = 0
由于A的属于不同特征值的特征向量线性无关
所以 k1(λ1-a) = 0, k2(λ2-a)=0
进而有 λ1=λ2=a 与已知矛盾.
第二个是因为齐次线性方程组 (A-λE)x=0 的解的线性组合仍是它的解.
若 k1α1+k2α2≠0 是A的属于特征值a的特征向量
则 A(k1α1+k2α2) = a(k1α1+k2α2), 且k1≠0 且 k2≠0.
所以有 k1Aα1+k2Aα2 = k1λ1α1+k2λ2α2 = ak1α1+ak2α2
所以 k1(λ1-a)α1+k2(λ2-a)α2 = 0
由于A的属于不同特征值的特征向量线性无关
所以 k1(λ1-a) = 0, k2(λ2-a)=0
进而有 λ1=λ2=a 与已知矛盾.
第二个是因为齐次线性方程组 (A-λE)x=0 的解的线性组合仍是它的解.
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.若k1+k2仍为特征向
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量
λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求证α1,α2线性无关.
设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关
线性代数问题 1元.设λ1、λ2是n阶矩阵A的两个不同特征值,对应的特征向量分别为α1、α2,试证:c1α1+c2α2(
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
已知λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求出α2,(A^2)×(α1+α2)线性无关的
线性代数,设A是n阶方阵,λ1,λ2是A的两个不同特征值,X1,X2是A的分别属于λ1,λ2的特征向量,试证明X1,X2
λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求α1,A(α1+α2)线性无关充要条件
设α1,α2是矩阵A属于不同特征值的特征向量,证明α1+α2不是矩阵A的特征向量
设A是n阶矩阵,a,b是A的两个不同的特征值,x,y是A的分别属于a,b的特征向量,证明:x+y不是A的特征向量