作业帮 > 数学 > 作业

直线y=2,与函数f(x)=2sin²wx+2根号下3coswx-1(w>0)的图像相邻交点间距离为π.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:46:39
直线y=2,与函数f(x)=2sin²wx+2根号下3coswx-1(w>0)的图像相邻交点间距离为π.
(1)求函数的解析式和单调递增区间
(2)将函数图像左移四分之π个单位,得到g(X)图,求g(X)的最大值及对应的x的取值集合.
直线y=2,与函数f(x)=2(sinwx)平方+2根号下3coswx-1(w>0)的图像相邻交点间距离为π。
直线y=2,与函数f(x)=2sin²wx+2根号下3coswx-1(w>0)的图像相邻交点间距离为π.
(1)f(x)=2sin²(ωx)+2√3sinωxcosωx-1
=√3sin(2ωx)-cos(2ωx)
=2sin(2ωx-π/6)
易知函数有最大值2
又直线y=2与函数f(x)的图像两个相邻交点(即函数图像峰顶)之间的距离为π
所以由函数f(x)的图像与性质可得:
周期T=2π/(2ω)=π
解得ω=1
所以函数解析式为:f(x)=2sin(2x-π/6)
易知函数的单调递增区间为[kπ-π/6,kπ+π/3],k∈Z
单调递减区间为[kπ+π/3,kπ+5π/6],k∈Z
(2)将函数f(x)的图像向左平移π/4个单位得到函数g(x)的图像,则可得:
g(x)=2sin[2(x+π/4)-π/6)]=2sin(2x+π/3)
则当2x+π/3=2kπ+π/2时,函数g(x)有最大值为2
此时x的取值集合为{x | x=kπ+π/12,k∈Z}