作业帮 > 数学 > 作业

如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:28:28
如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的斜率为定值.
如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的
设K,直线ME的斜率为 k(k>0),
则直线MF的斜率为-k,直线ME 的方程为
y-y0=k(x-y02),由

y−y0=k(x−y02)
y2=x
得ky2-y+y0(1-ky0)=0.
于是y0yE=
y0(1−ky0)
k,
所以yE=
1−ky0
k.
同理可得yF=
1+ky0
−k,
∴kEF=
yE−yF
xE−xF=
yE−yF
yE2−yF2=
1
yE+yF=−
1
2y0(定值)
如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的 M是抛物线y^2=x上的一点,动弦ME,MF分别交x轴于A,B两点.问,当|MA|=|MB|时,求证直线EF的斜率为定值 M是抛物线y^2=x上的一点,动弦ME,MF分别交x轴于A,B两点.问,当|MA|=|MB|,若点M为定值, A,B是两个定点,且|AB|=8,动点M到A的距离为10,线段MB垂直平分线L交MA于点P,若以AB所在直线为X轴AB中 如图,P是抛物线 y2=x2-6x+9对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交 设抛物线y^2=2px的焦点为f,经过点f的直线与抛物线交于a、b两点,又m是其准线上一点,试证:直线ma、mf、mb 过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为 设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列 已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为K的直线交于A,B两点,若向量MA与向量MB的内积=0,则 已知抛物线y2=8x上两个动点A、B及一个定点M(x0,y0),F是抛物线的焦点,且|AF|、|MF|、|BF|成等差数 有关抛物线的已知抛物线y^2=8x上两个动点A、B及一个定点M(x0,y0),F是抛物线的焦点,且AF,MF,BF成等差 p是抛物线y=2x的平方-8x+8对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y交于点A、B---