如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴于点C,点D为对称轴l上的一个动点.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:41:42
如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴于点C,点D为对称轴l上的一个动点.
(1)求当AD+CD最小时,点D的坐标;
(2)以点A为圆心,以AD为半径作⊙A
①证明:当AD+CD最小时,直线BD与⊙A相切.
②写出直线BD与⊙A相切时,D点的另一个坐标______.
(1)求当AD+CD最小时,点D的坐标;
(2)以点A为圆心,以AD为半径作⊙A
①证明:当AD+CD最小时,直线BD与⊙A相切.
②写出直线BD与⊙A相切时,D点的另一个坐标______.
(1)因为点A关于l的对称点是点B,所以连接BC,交l于点D,即为所求点.
由抛物线y=-x2+2x+3与x轴交于A、B两点,
则对称轴为:x=1.
当-x2+2x+3=0,
解得:x=3或x=-1.
∴点A(-1,0),点B(3,0),
抛物线y=-x2+2x+3当x=0时,y=3,
∴点C(0,3).
设直线BC为:y=kx+b,
代入点B,C得:k=-1,b=3,即y=-x+3,
代入对称轴x=1,则y=2,
∴点D(1,2).
(2)①由题意如图,
∵A,B关于l对称,
∴AD=BD,BE=2,AB=4,DE=2,
则BD=AD=
DE2+BE2=2
2,
∴BD2+AD2=16,
∵AB2=16,
∴BD2+AD2=AB2,
由勾股定理的逆定理知,∠ADB=90°,即AD⊥BD.
故当AD+CD最小时,直线BD与⊙A相切.
②由①所得点D的另一个坐标(1,-2).
由抛物线y=-x2+2x+3与x轴交于A、B两点,
则对称轴为:x=1.
当-x2+2x+3=0,
解得:x=3或x=-1.
∴点A(-1,0),点B(3,0),
抛物线y=-x2+2x+3当x=0时,y=3,
∴点C(0,3).
设直线BC为:y=kx+b,
代入点B,C得:k=-1,b=3,即y=-x+3,
代入对称轴x=1,则y=2,
∴点D(1,2).
(2)①由题意如图,
∵A,B关于l对称,
∴AD=BD,BE=2,AB=4,DE=2,
则BD=AD=
DE2+BE2=2
2,
∴BD2+AD2=16,
∵AB2=16,
∴BD2+AD2=AB2,
由勾股定理的逆定理知,∠ADB=90°,即AD⊥BD.
故当AD+CD最小时,直线BD与⊙A相切.
②由①所得点D的另一个坐标(1,-2).
如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴于点C,点D为对称轴l上的一个动点.
如图,已知抛物线y=- x2+x+3的图象与x轴交于点A、点B,与y轴交于点C,顶点为D,对称轴l与直线BC相交于点E
如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点P为第一象限的抛物线上的一点
如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上
如图,已知抛物线y=-x2+4x+3与y轴交与点A,与x轴正半轴交与点D,顶点为点B,抛物线的对称轴交x轴于点c,M是
如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2
如图,抛物线y=-x^2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与
如图,抛物线y=-x平方+2x+3与x轴相交于A,B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与
如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-3),对称轴是直线x=
已知,如图,抛物线y等于x2减2x减3的图像与x轴交与AB两点,与y轴交于点C,顶点D,对称轴与x轴交与K ,在对称轴上