作业帮 > 数学 > 作业

已知RT三角形ABC中,ACB=90,将RT三角形ABC绕点C顺时针旋转90,得到三角形DHC,DH的延长线交AB于点G

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:17:41
已知RT三角形ABC中,ACB=90,将RT三角形ABC绕点C顺时针旋转90,得到三角形DHC,DH的延长线交AB于点G,连接AD,作DE平行AB,BE平行AD,交于点E,点P是线段DE上的动点,连接AP,PB,AP交DG于点F,连接BF,AG=2,BG=3.
1,求DH的长
2,设FG=x,AP=y,求y与x的函数关系式(不要求写自变量取值范围)
3,是否存在点P,使得APB=ABF,若存在,求出FG的长,若不存在,请说明理由.
已知RT三角形ABC中,ACB=90,将RT三角形ABC绕点C顺时针旋转90,得到三角形DHC,DH的延长线交AB于点G
1,DH=AB=AG+BG=2+3=5
2,设FG=x,AP=y,求y与x的函数关系式(不要求写自变量取值范围)
将RT三角形ABC绕点C顺时针旋转90,故DH⊥AB、△AGH∽△DGB.
AG/DG=GH/GB,即:2/(5+GH)=GH/3,GH=1,
DG=DH+GH=6.
作PG'垂直于AB,则:PG'=DG=5+1=6 ,△AFG∽△APG' 、 AF=√(4+x²)
得:AF/AP=FG/PG' 有 :√(4+x²)/y=x/6 y=6√(X²+4) /X
整理得:36x²-x²y²+144=0
3,是否存在点P,使得APB=ABF,若存在,求出FG的长,若不存在,请说明理由.
若存在∠APB=∠ABF 又∠BAP=∠FAB.则:△BAF∽△PAB 有:AB/AP=AF/AB.
即:5/y=√(X²+4) /5 y√(x²+4)=25,6(X²+4)/X=25,X=3/2或8/3.
AD∥BE,DE∥AB,故四边形ABED为平行四边形,DE=AB=5.
X=8/3时,GF/DF=AG/PD,即(8/3)/(6-8/3)=2/PD,PD=2.5<5
X=3/2时,GF/DF=AG/PD,即(3/2)/(6-3/2)=2/PD,PD=6>5不合题意,舍去.
故:存在点P,使得∠APB=∠ABF,此时FG的长为8/3.