函数f(x)=ax²+b|x|+c (a不等于0)在其定义域R内有四个单调区间,则实数a,b,c满足?
函数f(x)=ax²+b|x|+c (a不等于0)在其定义域R内有四个单调区间,则实数a,b,c满足?
函数f(x)=ax^2+b|x |+c(a≠0),其定义域R分成了四个单调区间,则实数a,b,c满足
函数f(x)=ax2+b|x|+c(a≠0),其定义域R分成了四个单调区间,则实数a,b,c满足( )
设a,b∈R,且a不等于2,定义在区间(-b,b)内的函数,f(x)=1+ax/1+2x满足f(x)+f(-x)=0
已知函数f(x)=1/3x³+1/2ax²+2bx+c(a,b,c∈R),且函数f(x)在区间(0,
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
数学题,六点半就要已知函数f(x)=ax²+bx+c在区间[a,b]上单调,且f(a)×f(b)<0,则方程f
已知函数f(x)的定义域是R,且f(-x)=1/f(x)>0,若g(x)=f(x)+c(c为常数)在区间[a,b]上单调
已知二次函数f(x)=ax2 bx c(a不等于零,b,c属于R)满足:对任意实数
已知函数f(x)的定义域为R,满足f(-x)=1/f(x)>0,且g(x)=f(x)+c(c为常数)在区间[a,b]上是
设二次函数f(X)=ax²+bx+c(a,b,c属于R)满足下列条件①当X属于R时,其最小值为0且f(x-1)
设函数f(x)=3ax²-2(a+c)x+c(a>c>0).函数f(x)在区间(0,1)内是否有零点?为什么?