在三角形ABC中,三边a,b,c与它面积S三角形ABC满足条件关系:S三角形ABC=a^-(b-c)^,求tanA的值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 09:04:56
在三角形ABC中,三边a,b,c与它面积S三角形ABC满足条件关系:S三角形ABC=a^-(b-c)^,求tanA的值
有具体过程.
有具体过程.
由余弦定理得:a^2=b^2+c^2-2*b*c*CosA
由三角形面积公式得:S三角形ABC=1/2*bc*sinA
又S三角形ABC=a^-(b-c)^=a^2-b^2-c^2+2bc
综上得:
1/2*bc*sinA=a^2-b^2-c^2+2bc
=b^2+c^2-2*b*c*CosA -b^2-c^2+2bc
=2bc(1-cosA)
即:
1/2*bc*sinA=2bc(1-cosA)
亦即:
sinA=4(1-cosA)
4[tan(A/2)]^2-tan(A/2)=0
tan(A/2)=1/4
tanA=2tan(A/2)/[1-(tan(A/2))^2]=(2*1/4)/[1-(1/4)^2]=8/15
由三角形面积公式得:S三角形ABC=1/2*bc*sinA
又S三角形ABC=a^-(b-c)^=a^2-b^2-c^2+2bc
综上得:
1/2*bc*sinA=a^2-b^2-c^2+2bc
=b^2+c^2-2*b*c*CosA -b^2-c^2+2bc
=2bc(1-cosA)
即:
1/2*bc*sinA=2bc(1-cosA)
亦即:
sinA=4(1-cosA)
4[tan(A/2)]^2-tan(A/2)=0
tan(A/2)=1/4
tanA=2tan(A/2)/[1-(tan(A/2))^2]=(2*1/4)/[1-(1/4)^2]=8/15
在三角形ABC中,三边a,b,c与它面积S三角形ABC满足条件关系:S三角形ABC=a^-(b-c)^,求tanA的值
在三角形ABC中三边a,b,c和它的面积S间满足条件S=a^2-(b-c)^2,且b+c=8求S的面积最大值
已知三角形ABC的三边a,b,c和面积S满足S=a2-(b-c)2,求tanA的值
在三角形ABC中,三边a,b,c与面积S满足:S=a^2-(b-c)^2,求tg(B+C)
在三角形ABC中,a.b.c是三角形ABC的三边,面积s=(a-b+c)(a+b-c),则cosA的值为
在三角形ABC中,abc是三角形ABC的三边,面积S=(a-b+c)(a+b-c),则cosA的值为
在三角形abc中 已知面积s=(b c)^2-a^2,求tanA的值
已知三角形ABC的三边长a、b、c和面积S满足S=a2-(b-c)2,且b+c=8,求S的最大值.
已知a,b,c是三角形ABC的三边,面积s=(a-b+c)(a+b-c)求cosA
在三角形中ABC中,三边长a,b,c和面积S满足S=a的平方-(b-c)的平方,且b+c=8,求S的最大值
在三角形abc中,S为三角形的面积,且S=c^-(a-b)^,求tanC
在三角形ABC中,A.B.C成等差数列,且sinAsinC=cos^2*B,S三角形ABC=4根号3,求三边a,b,c