作业帮 > 数学 > 作业

等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 12:00:25
等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标.
等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标.
作AE⊥BC,DF⊥BC分别与E,F,则EF=AD=2,BE=CF=1,
直角△ABE中,∠B=45°,则其为等腰直角三角形,因而AE=BE=1,CE=3.
以BC所在的直线为x轴,由B向C的方向为正方向,AE所在的直线为y轴,由E向A的方向为正方向建立坐标系,
则A(0,1),B(-1,0),C(3,0),D(2,1).