黑板上写着从1、2、3、……2007个连续自然数,Sroan每次擦去其中任意几个数,Pasber就写上被擦去数之和除以1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 10:51:14
黑板上写着从1、2、3、……2007个连续自然数,Sroan每次擦去其中任意几个数,Pasber就写上被擦去数之和除以18所得的余数,最后黑板上余下三个不同的数,其中最小的数字是5,那么最大数不可能超过多少?
题目1:黑板上写着从1开始到2007的连续自然数,小明每次抹去其中的若干个数,他就写上被抹去数之和除以18得到的余数.最后黑板上剩下了3个数,其中最小的是6,最大应不超过多少?
1+2+3+…+2007=(1+2007)*2007/2=1004*2007,结果一定是18的倍数,因为每次抹去的数的和是18的倍数,所以剩下的数的和也应是18的倍数.
剩下的三个数中,最小的数是6,为了使第三个数尽量大,则第二个数就要尽量小,所以第二个数只可能为7,前两个数的和6+7=13,所以第三个数除以18应余18-13=5,即这个数最大是2003.
题目2:在1~2007的所有自然数中,至少要选出多少个数才能保证他们中的每一个数都不是另一个数的倍数,而且没有出现对称数(如:33、202、585、1001等).
首先从1~2007里排除1~1003,即选出1004个,再排除对称数1111、1221、1331、1441、1551、1661、1771、1881、1991、2002,所以至少要选出1004-10=994个.
看完再思考你那道题,仅供参考.
1+2+3+…+2007=(1+2007)*2007/2=1004*2007,结果一定是18的倍数,因为每次抹去的数的和是18的倍数,所以剩下的数的和也应是18的倍数.
剩下的三个数中,最小的数是6,为了使第三个数尽量大,则第二个数就要尽量小,所以第二个数只可能为7,前两个数的和6+7=13,所以第三个数除以18应余18-13=5,即这个数最大是2003.
题目2:在1~2007的所有自然数中,至少要选出多少个数才能保证他们中的每一个数都不是另一个数的倍数,而且没有出现对称数(如:33、202、585、1001等).
首先从1~2007里排除1~1003,即选出1004个,再排除对称数1111、1221、1331、1441、1551、1661、1771、1881、1991、2002,所以至少要选出1004-10=994个.
看完再思考你那道题,仅供参考.
黑板上写着从1、2、3、……2007个连续自然数,Sroan每次擦去其中任意几个数,Pasber就写上被擦去数之和除以1
在黑板上写上1,2,…,2003这2003个自然数,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上
黑板上写着从1开始的若干个连续自然数,擦去其中的一个后,其余平均数是19分之560 ,擦去的数是多少?
黑板上写有1、2、3…100,着100个自然数,擦去其中1个,剩下数的平均数是35又11分之7,擦去的数是几?
黑板上写有0.01,0.02,0.03,……,1这100个数,每次任意地擦去其中的两个数a,b,并写上2ab-a-b+1
再重复一遍:黑板上写有从1开始的若干个连续自然数:123456……擦去其中的一个数后剩下的所有数的和是2008擦去的数是
黑板上写着1,2,3,.,99,100共100个数,每次任意擦去2个数……这个数是什么?
黑板上写着1开始的若干个连续自然数,擦去其中的一个后,其余各数的平均数是35又7/17,擦去的数是多少?
王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数
黑板上写有1,2,3,4,.,24,25二十五个数,每次将其中任意两个数擦去,然后写上他们的差,问能不能经过
黑板上写着1~2008共2008个数字,茜茜每次擦去2个奇偶性相同的数,在写上平均数,最后只有一个自然数.
黑板上写着1至2008共2008个自然数,小明每次擦去两个奇偶相同的数,再写上它们的平均数,最后黑板上只剩下