过抛物线y=4x的焦点的直线l与抛物线交于A,B两点,O为坐标原点,求△AOB的重心G的轨迹方程.拜托了各位 谢谢
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:09:57
过抛物线y=4x的焦点的直线l与抛物线交于A,B两点,O为坐标原点,求△AOB的重心G的轨迹方程.拜托了各位 谢谢
抛物线的焦点坐标为(1,0),当直线l不垂直于x轴时,设方程为y=k(x-1),代入y 2 =4x,得k 2 x 2 -x(2k 2 +4)+k 2 =0. 设l方程与抛物线相交于两点,∴k≠0.设点A、B的坐标分别为(x 1 ,y 1 )、(x 2 ,y 2 ),根据韦达定理,有x 1 +x 2 = 2(k2+2) k2 ,从而y 1 +y 2 =k(x 1 +x 2 -2)= 4 k . 设△AOB的重心为G(x,y),消去k,得x= 2 3 + 4 3 ( 3 4 y)2,则x= 0+x1+x2 3 = 2 3 + 4 3k2 ,y= 0+y1+y2 3 = 4 3k ,∴y 2 = 4 3 x- 8 9 . 当l垂直于x轴时,A、B的坐标分别为(1,2)和(1,-2),△AOB的重心G( 2 3 ,0),也适合y 2 = 4 3 x- 8 9 ,因此所求轨迹C的方程为y 2 = 4 3 x- 8 9 . 补充:1.设A、B、G坐标为(x1,y1)(x2,y2)(x3,y3) L为y=kx-k (k≠0) 3x3=x1+x2 3y3=y1+y2 将直线方程代入 抛物线方程 得:ky^2-4y-4k=0 4(x1+x2)=y1^2+y2^2 =(y1+y2)^2-2y1y2 3y3=4/k 代入化简得:12x3-8=9y3^2 即方程为 12x-8=9y^2
过抛物线y=4x的焦点的直线l与抛物线交于A,B两点,O为坐标原点,求△AOB的重心G的轨迹方程.拜托了各位 谢谢
过抛物线y2=4x的焦点的直线l与抛物线交于A、B两点,O为坐标原点.求△AOB的重心G的轨迹C的方程.
过抛物线L:y^2=4x的焦点F的直线l交此抛物线于A、B两点 1、极坐标原点为O,求三角形OAB的重心G的轨迹方程
已知过抛物线y^2=4x的焦点的直线l与抛物线交于A.B两点,O为坐标原点,求△AOB的重心
过抛物线y^2=4x的焦点F的直线L与这条抛物线交于A.B两点,O为坐标原点
过抛物线y^2=4x焦点的直线交抛物线于A,B两点,已知IABI=10,O为坐标原点,求△OAB的重心坐标.
过抛物线y^2=4X焦点的直线交抛物线于A、B两点,己知|AB|=10,o为坐标原点,求厶OAB的重心坐标
过抛物线y²=4x焦点的直线交抛物线于A、B两点,已知AB的长度为10,O为坐标原点,求三角形OAB的重心的坐
已知直线l经过抛物线x^2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.⑴证明:角AOB为钝角 ⑵若三角形AO
过抛物线y^2=4x的焦点的直线交抛物线于A、B两点,已知|AB|=8,O为坐标原点,则△OAB的重心的横坐标为()
过抛物线y²=4x焦点的直线交抛物线于A,B两点,已知AB的绝对值=8,O为坐标原点,△OAB的重心的横坐标为
过抛物线y2=2x的焦点的直线交抛物线于A,B两点,已经知道:|AB|10.O为坐标原点.则三角形AOB的重心的横坐标是