作业帮 > 数学 > 作业

已知抛物线C1:y=x^2-(m+2)+1/2 m^2+2与C2:y=x^2+2m+n具有下列特征:1.都与x轴有交点;

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 07:07:27
已知抛物线C1:y=x^2-(m+2)+1/2 m^2+2与C2:y=x^2+2m+n具有下列特征:1.都与x轴有交点;2.与y轴相交于同一点.
(1)求m,n的值;
(2)试写出x为何值时,y1>y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2
已知抛物线C1:y=x^2-(m+2)+1/2 m^2+2与C2:y=x^2+2m+n具有下列特征:1.都与x轴有交点;
已知:抛物线C1:y1=x²-(m+2)x+1/2m²+2与C2:y2=x²+2mx+n具有下列特征:
①都与X轴有交点;②与Y轴相交于同一点
(1)求m、n的值
(2)试写出x为何值时,y1>y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2
解:
显然两条抛物线均开口向上;
对于C1:Δ1=(m+2)²-4(1/2m²+2)=-(m-2)²≤0,但C1与x轴有交点,∴Δ1≥0,
∴-(m-2)²=0,m=2■,∴C1:y1=x²-4x+4=(x-2)²,它与y轴的交点为(0,4);
对于C2:m=2代入,方程化为y2=x²+4x+n,又它与y轴的交点亦为(0,4),
代入求得n=4■,∴C2:y2=(x+2)²;
(2)因为C1、C2与y轴的交点为(0,4),
∴当x<0时,y1>y2 ■;
(3)比较两条抛物线的方程可知,他们的焦参数p均为1/2,所以形状相同,
又C1、C2的顶点分别为(2,0),(-2,0),
∴C1向x轴负方向移动4个单位即得到C2■