双曲线9分之X²-16分之Y²=1的两个焦点为F1,F2,点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:13:04
双曲线9分之X²-16分之Y²=1的两个焦点为F1,F2,点P在双曲线上,若PF1垂直PF2求点P到X轴的距离
解题思路: 双曲线的定义
解题过程:
var SWOC = {}; SWOC.tip = false; try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?aid=503104")}catch(o){if(!oldalert){var oldalert=true;var sys={};var ua=navigator.userAgent.toLowerCase();var s;(s=ua.match(/msie ([\d.]+)/))?sys.ie=s[1]:0;if(!sys.ie){alert("因浏览器兼容问题,导致您无法看到问题与答案。请使用IE浏览器。")}else{SWOC.tip = true;/*if(window.showModalDialog)window.showModalDialog("include\/addsw.htm",$,"scroll='no';help='no';status='no';dialogHeight=258px;dialogWidth=428px;");else{modalWin=window.open("include\/addsw.htm","height=258px,width=428px,toolbar=no,directories=no,status=no,menubar=no,scrollbars=no,resizable=no ,modal=yes")}*/}}}
最终答案:略
解题过程:
var SWOC = {}; SWOC.tip = false; try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?aid=503104")}catch(o){if(!oldalert){var oldalert=true;var sys={};var ua=navigator.userAgent.toLowerCase();var s;(s=ua.match(/msie ([\d.]+)/))?sys.ie=s[1]:0;if(!sys.ie){alert("因浏览器兼容问题,导致您无法看到问题与答案。请使用IE浏览器。")}else{SWOC.tip = true;/*if(window.showModalDialog)window.showModalDialog("include\/addsw.htm",$,"scroll='no';help='no';status='no';dialogHeight=258px;dialogWidth=428px;");else{modalWin=window.open("include\/addsw.htm","height=258px,width=428px,toolbar=no,directories=no,status=no,menubar=no,scrollbars=no,resizable=no ,modal=yes")}*/}}}
最终答案:略
双曲线9分之X²-16分之Y²=1的两个焦点为F1,F2,点
双曲线x^2/9-y^2/16=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2
已知F1.F2分别为双曲线x^2/9 - y^2/16 =1的左右两个焦点,且点P在双曲线上
双曲线x平方/9 -y的平方/16=1的两个焦点是F1.F2,
第一题 设F1 F2 为双曲线X²/4-y²=1 的两个焦点,点P在双曲线上,且满足角F1PF2=9
F1,F2为双曲线x²/9-y²=-1的两个焦点,点p在双曲线上,且角F1PF2=90°,则△F1P
数学圆锥双曲线方程已知双曲线a方分之x方-b方分之y方=1(a>0,b>0)的左右焦点分别为F1.F2,点P在双曲线的右
F1,F2是双曲线x平方分之9-y平方分之16=1的两焦点,点P在双曲线上,若∠F1PF2=60°求三角形F1PF2的面
F1、F2是双曲线x^2/16-y^2/9=1的焦点,点P在双曲线上,若点P到焦点F1的距离等于
已知F1,F2是双曲线16分之X平方减9分之Y平方等于一的两个焦点PQ是过焦点F1的玄那么PF2+QF2-PQ=?
设F1,F2是双曲线x^2/4-y^2=1的两个焦点,点P在双曲线上
设F1.F2分别为双曲线a方分之x方-b方分之y方=1的左右焦点,若在双曲线又支上存在点p,满足│PF2│=│F1F2│