如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/21 00:02:36
如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按次变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是______,B4的坐标是______.
(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是______.Bn的坐标是______.
(1)观察每次变换前后的三角形有何变化,找出规律,按次变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是______,B4的坐标是______.
(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是______.Bn的坐标是______.
(1)因为A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,
同时横坐标都和2有关,为2n,那么A4(16,3);
因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,
同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);
(2)由上题第一问规律可知An的纵坐标总为3,横坐标为2n,Bn的纵坐标总为0,横坐标为2n+1,
∴A的坐标是(2n,3),B的坐标是(2n+1,0).
故答案为(1)(16,3),(32,0),(2)(2n,3),(2n+1,0).
同时横坐标都和2有关,为2n,那么A4(16,3);
因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,
同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);
(2)由上题第一问规律可知An的纵坐标总为3,横坐标为2n,Bn的纵坐标总为0,横坐标为2n+1,
∴A的坐标是(2n,3),B的坐标是(2n+1,0).
故答案为(1)(16,3),(32,0),(2)(2n,3),(2n+1,0).
如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变
如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B
在平面直角坐标系当中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2
如图所示,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B
在直角坐标系中,第一次将三角形OAB变换成OA1B1 ,第二次将三角形OA1B1变换成OA2B2 ,第三次将三角形OA2
图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第
如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2
如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B2,第二次将三角形OA1B1变换成三角形OA2B2
如图,在平面直角坐标系中,第一次将△OAB变化成△OA1B1
在直角坐标系中第一次将三角形OAB变成三角形OA1B2第二次把三角形变成OA2B2第三次把三角形变成OA3B3.
如图,在△OAB中,∠OAB=90°,OA=OB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.
如图,在Rt△ABC中,∠OAB=90°,OA=AB=6,将△绕点O沿逆时针方向旋转90°得到△OA1B1