已知直线l经过抛物线y²=4x的焦点F,且与抛物线的交于A、B两点,求焦点弦AB的中点M的轨迹方程
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:17:18
已知直线l经过抛物线y²=4x的焦点F,且与抛物线的交于A、B两点,求焦点弦AB的中点M的轨迹方程
用韦达定理算出M点坐标之后就不知道怎么做了...
用韦达定理算出M点坐标之后就不知道怎么做了...
当直线斜率不存在时,L与X轴垂直,AB为通径,F(2,0)就是AB的中点;
当直线斜率存在时,可设直线L的方程为y=k(x-2),代入抛物线y2=4x中,
整理得:k2x2-(4k2+4)x+4k2=0①
设A(x1,kx1-2k)B(x2,kx2-2k),由韦达定理得:x1+x2=(4k2+4)/k2, x1.x2=4②
AB的中点M(x,y),x=(x1+x2)/2=(2k2+2)/k2③,
y=[(kx1-2k)+(kx2-2k)]/2=2/k④,则k=2/y,代入③
有y2=2(x-2),F(2,0)也满足该式,综上所述,AB的中点M的轨迹方程是y2=2(x-2)其中x≥2
当直线斜率存在时,可设直线L的方程为y=k(x-2),代入抛物线y2=4x中,
整理得:k2x2-(4k2+4)x+4k2=0①
设A(x1,kx1-2k)B(x2,kx2-2k),由韦达定理得:x1+x2=(4k2+4)/k2, x1.x2=4②
AB的中点M(x,y),x=(x1+x2)/2=(2k2+2)/k2③,
y=[(kx1-2k)+(kx2-2k)]/2=2/k④,则k=2/y,代入③
有y2=2(x-2),F(2,0)也满足该式,综上所述,AB的中点M的轨迹方程是y2=2(x-2)其中x≥2
已知直线l经过抛物线y²=4x的焦点F,且与抛物线的交于A、B两点,求焦点弦AB的中点M的轨迹方程
直线l经过抛物线y2=4x的焦点F,与抛物线交于A,B两点,则弦AB中点的轨迹方程为______.
经过抛物线y^2=4x的焦点F的直线L与该抛物线交于A,B两点,若线段AB的斜率为K,中点M的轨迹方程是?
过抛物线y^2=4x的焦点作直线与抛物线交于A、B两点,求线段AB的中点M的轨迹方程
直线L过抛物线y^2=8x的焦点,且与抛物线交于A.B两点,求线段AB两点,求线段AB的中点M的轨迹方程
抛物线x^2=4y 的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,求AB中点的轨迹方程
直线l过抛物线y的平方=8x的焦点,且与抛物线交于A,B两点,求线段AB的中点M的轨迹方程.
过抛物线y2=4x焦点F的直线L与它交于A,B两点,则弦AB的中点的轨迹方程是多少
直线l经过抛物线y2=4x的焦点F,与抛物线交于A,B两点,则弦AB中点的轨迹方程为?这个是怎么消去参数k的
过抛物线x2=4y的焦点F作直线l交抛物线于AB两点,则弦AB的中点M的轨迹方程是?
过抛物线x^2=4y焦点作直线交抛物线于AB两点,求弦AB的中点M的轨迹方程
过抛物线X^2=4Y的焦点f作直线交抛物线于ab两点,则弦ab的中点M的轨迹方程?