已知 A B C 证明3=4
已知 A B C 证明3=4
高中不等式证明已知abc=1,且a,b,c为实数,证明:1/a+1/b+1/c+3/(a+b+c)>=4
已知a>b>c,用分析法或综合法证明:1/(a+b)+1/(b-c)>=4/(a-c)
已知a>b>c,用综合法证明a-b/1+b-c/1>=a-c/4
已知a、b、c都属正实数,且abc=1,证明1/a^3(b+c)+1/b^3(a+c)+1/c^3(b+a)
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
已知三角形三边a,b,c,证明:abc>=(a+b-c)(a+c-b)(b+c-a)
三角形ABC,已知a^3+b^3=c^3,证明C>π/3.
已知a.b.c是三个正数,证明:a^2*b^2*c^2>=a^b+c*b^a+c*c^a+b
已知a.b.c为正数,证明:a^2*b^2*c^2>=a^(b+c)*b^(a+c)*c^(a+b)
均值不等式问题,已知a,b,c属于R,且a/(b+c)=b/(a+c)-c/(a+b),证明b/(a+c)≥(√17-1
不等式证明习题已知a+b+c=1,a,b,c均属于正实数,求证1/a + 2/b + 4/c>=18.