如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:17:36
如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标;
(2)分别求当t=1,t=5时,线段PQ的长;
(3)求S与t之间的函数关系式;
(4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围.
(1)用含t的代数式表示点P的坐标;
(2)分别求当t=1,t=5时,线段PQ的长;
(3)求S与t之间的函数关系式;
(4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围.
(1)∵MP=t,OM=4,
∴OP=t+4,
∴P(t+4,0)(0≤t≤8).
(2)当t=1时,PQ=2×1=2.
当t=5时,OP=9,OQ=5-4=1,
∴PQ=9-1=8.
(3)如图①,当0≤t≤3时,
∵PQ=2t,
∴S=4t2.
如图②,当3<t≤4时,
∵PQ=2t,AB=6,
∴S=12t.
如图③,当4<t≤8时,
∵AQ=4-(t-4)+4=12-t,AB=6,
∴S=-6t+72.
(4)如图④,当点R在AC上时,如图6,
∵RP∥OC,
∴△APR∽△AOC,
∴
AP
OA=
PR
OC,
∴
4−t
8=
2t
6,
∴t=
12
11.
当点L在AC上时,如图7,
同理得出
LQ
OC=
AQ
OA,
∴
2t
6=
4+t
8,
t=
12
5,
∴
12
11<t≤
12
5.
如图⑤,当点L在y轴上时,t=4.
综上可得:
12
11<t≤
12
5或t=4.
∴OP=t+4,
∴P(t+4,0)(0≤t≤8).
(2)当t=1时,PQ=2×1=2.
当t=5时,OP=9,OQ=5-4=1,
∴PQ=9-1=8.
(3)如图①,当0≤t≤3时,
∵PQ=2t,
∴S=4t2.
如图②,当3<t≤4时,
∵PQ=2t,AB=6,
∴S=12t.
如图③,当4<t≤8时,
∵AQ=4-(t-4)+4=12-t,AB=6,
∴S=-6t+72.
(4)如图④,当点R在AC上时,如图6,
∵RP∥OC,
∴△APR∽△AOC,
∴
AP
OA=
PR
OC,
∴
4−t
8=
2t
6,
∴t=
12
11.
当点L在AC上时,如图7,
同理得出
LQ
OC=
AQ
OA,
∴
2t
6=
4+t
8,
t=
12
5,
∴
12
11<t≤
12
5.
如图⑤,当点L在y轴上时,t=4.
综上可得:
12
11<t≤
12
5或t=4.
如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P
如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发
如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发
探索研究如图在平面直角坐标系中四边形oabc为矩形点ab的坐标分别为(4,0)(4,3),动点m,n分别从o,b同时出发
在平面直角坐标系xoy中,已知四边形OABC是平行四边形,A(4,0),C(1,1),点M是OA的中点,如图
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0),(4,3),动点M、N分别从点O、B同时
如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,P,Q两点同时从点M出发.
如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,
如图,平面直角坐标系中,矩形OABC的顶点A(6,0)、B(6,4),D是BC的中点.动点P从O点出发,以每秒1个单位的
已知:如图,平面直角坐标系中,矩形OABC的顶点A(6,0)、B(6,4),D是BC的中点.动点P从O点出发,以每