如图,在矩形ABCD中,将边AD折叠,使点Dl落在边BC的点F处,已知折痕AE=5根号5,且EC:FC的值为3:4
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:12:24
如图,在矩形ABCD中,将边AD折叠,使点Dl落在边BC的点F处,已知折痕AE=5根号5,且EC:FC的值为3:4
延长AE交BC的延长线于点G,过点F的直线分别交直线AB、线段AE于点P、Q.是否存在这样的直线,使点P、A、Q为顶点的三角形与△FGQ相似,请求出AP长
延长AE交BC的延长线于点G,过点F的直线分别交直线AB、线段AE于点P、Q.是否存在这样的直线,使点P、A、Q为顶点的三角形与△FGQ相似,请求出AP长
存在 AP=4或20
分为两种情况:
一、P在AB的反向延长线上(p在AB左边)AP=4
∠AQP=∠FQG
90 < ∠QFG < ∠AFG=90+∠EFC
因为DE=5 AD=10
tan∠DAE=1/2
因为tan∠EFC=3/4
所以∠DAE < ∠EFC
所以90 < ∠PAQ < ∠AFG
所以当Q在移动时 存在PQ使得∠PAQ=∠QFG即两个三角形相似
所以相似的时候∠P=∠Q
根据比例很容易得出CG=6 AG=8√5 EG=3√5
PB=2BF=12
所以AP=4
二、P在AB在延长线上(P在AB右边)AP=20
因为∠P+∠PAG=90 ∠Q+∠PAG=90
因此∠P=∠Q
因为AG与BG相交 不平行
所以永远可能存在P Q 使得∠AQP=∠QFG
要使两个三角形相似 只能是∠AQP=∠FQG=90
即PQ垂直AG
这样呢就很容易根据比例(直角三角形ABG APQ QFG CEG的三条边比例为1:2:√5)
知道 CG=6 EG=3√5
QF=2√5 QG=4√5 PG=8√5
AQ=4√5 AP=20
分为两种情况:
一、P在AB的反向延长线上(p在AB左边)AP=4
∠AQP=∠FQG
90 < ∠QFG < ∠AFG=90+∠EFC
因为DE=5 AD=10
tan∠DAE=1/2
因为tan∠EFC=3/4
所以∠DAE < ∠EFC
所以90 < ∠PAQ < ∠AFG
所以当Q在移动时 存在PQ使得∠PAQ=∠QFG即两个三角形相似
所以相似的时候∠P=∠Q
根据比例很容易得出CG=6 AG=8√5 EG=3√5
PB=2BF=12
所以AP=4
二、P在AB在延长线上(P在AB右边)AP=20
因为∠P+∠PAG=90 ∠Q+∠PAG=90
因此∠P=∠Q
因为AG与BG相交 不平行
所以永远可能存在P Q 使得∠AQP=∠QFG
要使两个三角形相似 只能是∠AQP=∠FQG=90
即PQ垂直AG
这样呢就很容易根据比例(直角三角形ABG APQ QFG CEG的三条边比例为1:2:√5)
知道 CG=6 EG=3√5
QF=2√5 QG=4√5 PG=8√5
AQ=4√5 AP=20
如图,在矩形ABCD中,将边AD折叠,使点Dl落在边BC的点F处,已知折痕AE=5根号5,且EC:FC的值为3:4
如图,矩形ABCD,折叠矩形的一边AD,使点D落在BC边点F处,折痕AE=5根号5且EC/FC=3/4,求矩形的周长.
如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5根号3,EC:FC=3:4,求矩形ABCD的
如图,矩形ABCD,折叠矩形的一边AD,使点D落在BC边点F处,折痕AE=5根号5且EC/FC=3/4
如图,在矩形ABCD中,将边AD折叠,使点D落在边BC的点F处.已知折痕AE=5√5,且∠EFC的正切值为3/4
矩形ABCD中,现折叠矩形一边AD,使点D落在BC边的点F处,已知折痕AE=5*根号5,EC:FC=3:4.
初三的三角函数题如图,矩形ABCD,折叠矩形的一边AD,使点D落在BC边点F处,折痕AE=5根号5且EC/FC=3/4,
已知矩形ABCD,折叠矩形的一边AD,使点D落在BC边上的点F处,已知折痕AE=5根号5,且EC:FC=3:4
矩形ABCD中,折叠矩形的一边AD,使点D落在BC边的点F处,已知折痕AE=5倍根号5 cm,且EC/CF=3/4.1、
如图所示,折叠矩形的一边AD,使D落在BC边的F处,已知折痕AE=5倍的根号5,且EC:FC=3:4
如图,在矩形ABCD中,已知AB=8cm,BC=10cm,折叠矩形的一边AD,使点D落在BC边的点F处,折痕为AE,求C
将矩形纸片ABCD沿AE折叠,使点D落在BC边的点F处,已知折痕AE=10根号5,且tan=角EFC=3/4