已知命题p:“任意x属于[1,2],x^2+2x-a>=0”,命题q:“函数y=-x^2+ax-3在[1,2]上是单调函
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 21:10:53
已知命题p:“任意x属于[1,2],x^2+2x-a>=0”,命题q:“函数y=-x^2+ax-3在[1,2]上是单调函数”.若命题“p且非q”为真,试求a的取值范围.
已知命题p:函数y=loga(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立
若p∨q是真命题,求实数a的取值范围.考点:命题的真假判断与应用;函数恒成立问题.专题:计算题.分析:根据复合函数单调性的判定方法,我们可以判断出命题p满足时,参数a的取值范围,进而根据二次不等式恒成立的充要条件,我们易判断出命题q满足时,参数a的取值范围,进而根据p∨q是真命题,易得到满足条件的实数a的取值范围.解∵命题P函数y=loga(1-2x)在定义域上单调递增;
∴0<a<1
又∵命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;
∴a=2或a-2<0△=4(a-2)2+16(a-2)<0,
即-2<a≤2
∵P∨Q是真命题,
∴a的取值范围是-2<a≤2.点评:本题考查的知识点是命题的真假判断与应用,函数恒成立问题,其中根据已知求出命题p和q满足时,参数a的取值范围,是解答本题的关键,易在确定命题q满足时,参数a的取值范围,忽略a=2的情况,而错解为-2<a<2.
若p∨q是真命题,求实数a的取值范围.考点:命题的真假判断与应用;函数恒成立问题.专题:计算题.分析:根据复合函数单调性的判定方法,我们可以判断出命题p满足时,参数a的取值范围,进而根据二次不等式恒成立的充要条件,我们易判断出命题q满足时,参数a的取值范围,进而根据p∨q是真命题,易得到满足条件的实数a的取值范围.解∵命题P函数y=loga(1-2x)在定义域上单调递增;
∴0<a<1
又∵命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;
∴a=2或a-2<0△=4(a-2)2+16(a-2)<0,
即-2<a≤2
∵P∨Q是真命题,
∴a的取值范围是-2<a≤2.点评:本题考查的知识点是命题的真假判断与应用,函数恒成立问题,其中根据已知求出命题p和q满足时,参数a的取值范围,是解答本题的关键,易在确定命题q满足时,参数a的取值范围,忽略a=2的情况,而错解为-2<a<2.
已知命题p:“任意x属于[1,2],x^2+2x-a>=0”,命题q:“函数y=-x^2+ax-3在[1,2]上是单调函
已知命题p:“对任意的x属于[1,2],都有x>=a",命题q:“存在x属于R,使得x+2ax+2-a=0成立”.若命题
已知命题p:函数f(x)=ax在R上是减函数,命题q:函数g(x)=x2+(2-a)x+1在区间[-2,2]
命题p:任意x属于[1,2],x^2-a>=0 命题q:存在x属于R,使得x^2+(a-1)x+1
已知命题p:不等式ax^2-ax+1≥0的解集为R;命题q:函数y=(a-2)^x在R上单调递增.若“p∨q”为真命题,
(1/2)已知命题p:对任意x属于R,ax的平方+2x+3>0,命题q:只有一个实数x满足不等式x的平方+2ax+2a小
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为
已知a>0,命题p:任意x∈(0,+∞),有不等式x+a/x≥2恒成立,命题q:x∈R,函数f(x)=(a-1)^y是实
已知命题p所有x属于【1,2】,x^2-a》0,命题q存在x属于R,x^2+2ax+2-a=0,若两命题都真,求a的范围
已知命题p:存在x属于R,使得x^2-2ax+2a^2-5a+4=0;命题q:曲线x^2/3+y^2/a-3=1是双曲线
已知命题p:任意x∈[1,2],x²-a≥0;命题q:存在x∈R,使x²+2ax+2-a=0
已知命题p:函数f=lg(ax^2-x+1/16a)的定义域为R,命题q:不等式