作业帮 > 数学 > 作业

如图,在平面直角坐标系xOy中,经过点A,C,B的抛物线的一部分与经过点A,E,B的抛物线的一部分组合成一条封闭曲线,我

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 22:51:32
如图,在平面直角坐标系xOy中,经过点A,C,B的抛物线的一部分与经过点A,E,B的抛物线的一部分组合成一条封闭曲线,我们把这条封闭曲线称为“双抛物线”.已知P为AB中点,且P(-1,0),C(
2
如图,在平面直角坐标系xOy中,经过点A,C,B的抛物线的一部分与经过点A,E,B的抛物线的一部分组合成一条封闭曲线,我
(1)∵S△ACP=
1
2AP•|yC|=1,由题意知:|yC|=1,
∴AP=2,即A(-3,0);
由于A、B关于点P对称,则B(1,0);
设经过A、E、B的抛物线的解析式为:y=a(x+3)(x-1),则有:
a(0+3)(0-1)=-3,a=1,
故所求抛物线的解析式为:y=(x+3)(x-1)=x2+2x-3.
(2)由于△PAC和△PAF同底,若S△FAP=S△CAP,那么C、F的纵坐标的绝对值相同;
当F点的纵坐标为1时,C、F关于直线x=-1对称,则F(-
2-1,1);
当F点纵坐标为-1时,代入y=x2+2x-3中,得:x2+2x-3=-1,
解得x=-1±
3;
故F(-1+
3,-1)或(-1-
3,-1);
综上可知:存在符合条件的F点,且坐标为:F1(-
2-1,1)、F2(-1+
3,-1)、F3(-1-
3,-1).
(3)由于EG∥x轴,则E、G关于直线x=-1对称,故G(-2,-3);
设经过点G的“双抛物线”的切线的解析式为:y=kx+b,
则有:-2k+b=-3,b=2k-3;
∴y=kx+2k-3;
由于G点同时在切线和抛物线的图象上,
则有:x2+2x-3=kx+2k-3,
即x2+(2-k)x-2k=0,
由于两个函数只有一个交点,则:
△=(2-k)2+8k=0,
解得k=-2;
故所求切线的解析式为:y=-2x-7.
如图,在平面直角坐标系xOy中,经过点A,C,B的抛物线的一部分与经过点A,E,B的抛物线的一部分组合成一条封闭曲线,我 如图,在平面直角坐标系中,、为轴上两点,、为一上两点,经过点、、的抛物线的一部分与经过点、的抛物线的一部分组合成一条 如图,在平面直角坐标系xoy中,A、B为x轴上两点,C、D为y轴上两点,经过点A、C、B的抛物线的一部分了C1经过点A、 如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上两点,经过点A、C、B的抛物线的一部分C1与经 如图 在平面直角坐标系xoy中,B(6,0),A(-2,0),C(0,3).(1)求经过ABC三点的抛物线解析式,(2) 在平面直角坐标系xoy中,抛物线y=ax^2+bx+c经过A(3.0),B(5.0),c(0.5)三点,1.求此抛物线的 【疑问.如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴 如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0), C(5,0),抛物线的对称轴与X轴相交 如图,在平面直角坐标系xOy中,半径为1的圆O分别交x轴于A,B,C,D四点,抛物线y=x^2+bx+c经过点C且与直线 在平面直角坐标系xoy中,抛物线y=ax^2+bx+c(a≠0)经过点A(-3,0)和点B(1,0).设抛物线与y轴的交 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0) 如图,在平面直角坐标系xoy中,抛物线ax2+bx+c经过ABC三点,已知点A(-3,0)B(0,3)C(1,0)