若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx
若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx
设f(x)在【0,1】上连续.证明∫(π/2~0)f(cosx)dx=∫(π/2~0)f(sinx)dx
证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)
证明题f(u,v)在区域D=上连续,证明∫(π/2)(0)f(sinx,cosx)dx=∫(π/2)(0)f(cosx,
证明∫(上π,下0)xf(sinx)dx=π/2∫(上π,下0)f(sinx)dx
设f(x)-(cosx)^2=∫(下0上π/4)f(2x)dx,求∫(下0上π/2)f(x)dx.
∫f(sinx,cosx)dx=∫f(cosx,sinx)dx上下限是[0,π/2]
100分求高数积分题设f(x)在[-π,π]上连续 且f(x)=x/(1+(cosx)^2)+∫ f(x)sinX dx
设f(x)导数在【-1,1】上连续,且f(0)=1,计算∫【f(cosx)cosx-f‘(cosx)sin^2x】dx(
请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
特急:设函数f(x)在区间[0,2a]上连续,证明:∫ f(x)dx)=∫ [f(x)+f(2a-x)]dx,